scip_var.c
Go to the documentation of this file.
43/*---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9----+----0----+----1----+----2*/
92/** creates and captures problem variable; if variable is of integral type, fractional bounds are automatically rounded;
93 * an integer variable with bounds zero and one is automatically converted into a binary variable;
95 * @warning When doing column generation and the original problem is a maximization problem, notice that SCIP will
96 * transform the problem into a minimization problem by multiplying the objective function by -1. Thus, the
97 * original objective function value of variables created during the solving process has to be multiplied by
100 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
112 * @note the variable gets captured, hence at one point you have to release it using the method SCIPreleaseVar()
125 SCIP_DECL_VARTRANS ((*vartrans)), /**< creates transformed user data by transforming original user data, or NULL */
126 SCIP_DECL_VARDELTRANS ((*vardeltrans)), /**< frees user data of transformed variable, or NULL */
134 SCIP_CALL( SCIPcheckStage(scip, "SCIPcreateVar", FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
147 name, lb, ub, obj, vartype, initial, removable, vardelorig, vartrans, vardeltrans, varcopy, vardata) );
157 name, lb, ub, obj, vartype, initial, removable, vardelorig, vartrans, vardeltrans, varcopy, vardata) );
168/** creates and captures problem variable with optional callbacks and variable data set to NULL, which can be set
170 * SCIPvarSetDeltransData(), SCIPvarSetCopy(), and SCIPvarSetData(); sets variable flags initial=TRUE
171 * and removable = FALSE, which can be adjusted by using SCIPvarSetInitial() and SCIPvarSetRemovable(), resp.;
173 * an integer variable with bounds zero and one is automatically converted into a binary variable;
175 * @warning When doing column generation and the original problem is a maximization problem, notice that SCIP will
176 * transform the problem into a minimization problem by multiplying the objective function by -1. Thus, the
177 * original objective function value of variables created during the solving process has to be multiplied by
180 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
192 * @note the variable gets captured, hence at one point you have to release it using the method SCIPreleaseVar()
204 SCIP_CALL( SCIPcheckStage(scip, "SCIPcreateVarBasic", FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
206 SCIP_CALL( SCIPcreateVar(scip, var, name, lb, ub, obj, vartype, TRUE, FALSE, NULL, NULL, NULL, NULL, NULL) );
213 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
240 SCIP_CALL( SCIPcheckStage(scip, "SCIPwriteVarName", FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE) );
261 SCIPvarGetType(var) == SCIP_VARTYPE_IMPLINT ? SCIP_VARTYPE_IMPLINT_CHAR : SCIP_VARTYPE_CONTINUOUS_CHAR);
267/** print the given list of variables to output stream separated by the given delimiter character;
269 * i. e. the variables x1, x2, ..., xn with given delimiter ',' are written as: <x1>, <x2>, ..., <xn>;
273 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
303 SCIP_CALL( SCIPcheckStage(scip, "SCIPwriteVarsList", FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE) );
324 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
354 SCIP_CALL( SCIPcheckStage(scip, "SCIPwriteVarsLinearsum", FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE) );
385 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
423 SCIP_CALL( SCIPcheckStage(scip, "SCIPwriteVarsPolynomial", FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE) );
458/** parses variable information (in cip format) out of a string; if the parsing process was successful a variable is
459 * created and captured; if variable is of integral type, fractional bounds are automatically rounded; an integer
462 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
482 SCIP_DECL_VARTRANS ((*vartrans)), /**< creates transformed user data by transforming original user data */
491 SCIP_CALL( SCIPcheckStage(scip, "SCIPparseVar", FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
496 SCIP_CALL( SCIPvarParseOriginal(var, scip->mem->probmem, scip->set, scip->messagehdlr, scip->stat,
497 str, initial, removable, varcopy, vardelorig, vartrans, vardeltrans, vardata, endptr, success) );
506 SCIP_CALL( SCIPvarParseTransformed(var, scip->mem->probmem, scip->set, scip->messagehdlr, scip->stat,
507 str, initial, removable, varcopy, vardelorig, vartrans, vardeltrans, vardata, endptr, success) );
518/** parses the given string for a variable name and stores the variable in the corresponding pointer if such a variable
521 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
546 SCIP_CALL( SCIPcheckStage(scip, "SCIPparseVarName", FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
581 if( *str == '[' && (str[1] == SCIP_VARTYPE_BINARY_CHAR || str[1] == SCIP_VARTYPE_INTEGER_CHAR ||
582 str[1] == SCIP_VARTYPE_IMPLINT_CHAR || str[1] == SCIP_VARTYPE_CONTINUOUS_CHAR ) && str[2] == ']' )
588/** parse the given string as variable list (here ',' is the delimiter)) (<x1>, <x2>, ..., <xn>) (see
591 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
603 * @note The pointer success in only set to FALSE in the case that a variable with a parsed variable name does not exist.
605 * @note If the number of (parsed) variables is greater than the available slots in the variable array, nothing happens
606 * except that the required size is stored in the corresponding integer; the reason for this approach is that we
607 * cannot reallocate memory, since we do not know how the memory has been allocated (e.g., by a C++ 'new' or SCIP
632 SCIP_CALL( SCIPcheckStage(scip, "SCIPparseVarsList", FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
663 /* if all variable name searches were successful and the variable array has enough slots, copy the collected variables */
682/** parse the given string as linear sum of variables and coefficients (c1 <x1> + c2 <x2> + ... + cn <xn>)
685 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
697 * @note The pointer success in only set to FALSE in the case that a variable with a parsed variable name does not exist.
699 * @note If the number of (parsed) variables is greater than the available slots in the variable array, nothing happens
700 * except that the required size is stored in the corresponding integer; the reason for this approach is that we
701 * cannot reallocate memory, since we do not know how the memory has been allocated (e.g., by a C++ 'new' or SCIP
722 SCIP_CALL( SCIPcheckStage(scip, "SCIPparseVarsLinearsum", FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
735 SCIP_CALL( SCIPparseVarsPolynomial(scip, str, &monomialvars, &monomialexps, &monomialcoefs, &monomialnvars, &nmonomials, endptr, success) );
739 assert(nmonomials == 0); /* SCIPparseVarsPolynomial should have freed all buffers, so no need to call free here */
749 SCIPfreeParseVarsPolynomialData(scip, &monomialvars, &monomialexps, &monomialcoefs, &monomialnvars, nmonomials);
785 SCIPfreeParseVarsPolynomialData(scip, &monomialvars, &monomialexps, &monomialcoefs, &monomialnvars, nmonomials);
795 * monomialcoefs, monomialnvars, *nmonomials) short after SCIPparseVarsPolynomial to free all the
798 * Parsing is stopped at the end of string (indicated by the \\0-character) or when no more monomials
801 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
856 SCIP_CALL( SCIPcheckStage(scip, "SCIPparseVarsPolynomial", FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
876 while( *str && state != SCIPPARSEPOLYNOMIAL_STATE_END && state != SCIPPARSEPOLYNOMIAL_STATE_ERROR )
904 SCIP_CALL( SCIPduplicateBlockMemoryArray(scip, &(*monomialvars)[*nmonomials], vars, nvars) ); /*lint !e866*/
905 SCIP_CALL( SCIPduplicateBlockMemoryArray(scip, &(*monomialexps)[*nmonomials], exponents, nvars) ); /*lint !e866*/
1134 /* SCIPwriteVarsPolynomial(scip, NULL, *monomialvars, *monomialexps, *monomialcoefs, *monomialnvars, *nmonomials, FALSE); */
1139 SCIPfreeParseVarsPolynomialData(scip, monomialvars, monomialexps, monomialcoefs, monomialnvars, *nmonomials);
1174 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPfreeParseVarsPolynomialData", FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
1198 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1219 SCIP_CALL( SCIPcheckStage(scip, "SCIPcaptureVar", FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE) );
1227/** decreases usage counter of variable, if the usage pointer reaches zero the variable gets freed
1229 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1257 SCIP_CALL( SCIPcheckStage(scip, "SCIPreleaseVar", FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE) );
1276 if( !SCIPvarIsTransformed(*var) && (*var)->nuses == 1 && (*var)->data.original.transvar != NULL )
1278 SCIPerrorMessage("cannot release last use of original variable while associated transformed variable exists\n");
1292 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1305 SCIP_CALL( SCIPcheckStage(scip, "SCIPchgVarName", FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE) );
1333/** gets and captures transformed variable of a given variable; if the variable is not yet transformed,
1336 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1357 SCIP_CALL( SCIPcheckStage(scip, "SCIPtransformVar", FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE) );
1366 SCIP_CALL( SCIPvarTransform(var, scip->mem->probmem, scip->set, scip->stat, scip->origprob->objsense, transvar) );
1373 * if a variable of the array is not yet transformed, a new transformed variable for this variable is created;
1376 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1401 SCIP_CALL( SCIPcheckStage(scip, "SCIPtransformVars", FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE) );
1412 SCIP_CALL( SCIPvarTransform(vars[v], scip->mem->probmem, scip->set, scip->stat, scip->origprob->objsense,
1423 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1447 SCIP_CALL( SCIPcheckStage(scip, "SCIPgetTransformedVar", FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE) );
1461 * it is possible to call this method with vars == transvars, but remember that variables that are not
1464 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1492 SCIP_CALL( SCIPcheckStage(scip, "SCIPgetTransformedVars", FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE) );
1500 SCIP_CALL( SCIPvarGetTransformed(vars[v], scip->mem->probmem, scip->set, scip->stat, &transvars[v]) );
1507/** gets negated variable x' = lb + ub - x of variable x; negated variable is created, if not yet existing;
1508 * in difference to \ref SCIPcreateVar, the negated variable must not be released (unless captured explicitly)
1510 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1533 SCIP_CALL( SCIPcheckStage(scip, "SCIPgetNegatedVar", FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE) );
1541/** gets negated variables x' = lb + ub - x of variables x; negated variables are created, if not yet existing
1543 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1569 SCIP_CALL( SCIPcheckStage(scip, "SCIPgetNegatedVars", FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE) );
1579/** gets a binary variable that is equal to the given binary variable, and that is either active, fixed, or
1582 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1601 SCIP_Bool* negated /**< pointer to store whether the negation of an active variable was returned */
1610 SCIP_CALL( SCIPcheckStage(scip, "SCIPgetBinvarRepresentative", FALSE, TRUE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE) );
1626/** gets binary variables that are equal to the given binary variables, and which are either active, fixed, or
1629 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1649 SCIP_Bool* negated /**< array to store whether the negation of an active variable was returned */
1659 SCIP_CALL( SCIPcheckStage(scip, "SCIPgetBinvarRepresentatives", FALSE, TRUE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE) );
1679/** flattens aggregation graph of multi-aggregated variable in order to avoid exponential recursion later on
1681 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1700 SCIP_CALL( SCIPcheckStage(scip, "SCIPflattenVarAggregationGraph", FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE) );
1702 SCIP_CALL( SCIPvarFlattenAggregationGraph(var, scip->mem->probmem, scip->set, scip->eventqueue) );
1707/** Transforms a given linear sum of variables, that is a_1*x_1 + ... + a_n*x_n + c into a corresponding linear sum of
1710 * If the number of needed active variables is greater than the available slots in the variable array, nothing happens
1711 * except that the required size is stored in the corresponding variable (requiredsize). Otherwise, the active variable
1714 * The reason for this approach is that we cannot reallocate memory, since we do not know how the memory has been
1717 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1732 * @note The resulting linear sum is stored into the given variable array, scalar array, and constant. That means the
1735 * @note That method can be used to convert a single variables into variable space of active variables. Therefore call
1751 SCIP_Real* constant, /**< pointer to constant c in linear sum a_1*x_1 + ... + a_n*x_n + c which
1756 SCIP_Bool mergemultiples /**< should multiple occurrences of a var be replaced by a single coeff? */
1767 SCIP_CALL( SCIPcheckStage(scip, "SCIPgetProbvarLinearSum", FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE) );
1768 SCIP_CALL( SCIPvarGetActiveRepresentatives(scip->set, vars, scalars, nvars, varssize, constant, requiredsize, mergemultiples) );
1774 * multi-aggregated variable, scalar and constant; if the variable resolves to a fixed variable,
1775 * "scalar" will be 0.0 and the value of the sum will be stored in "constant"; a multi-aggregation
1777 * is treated like an aggregation; if the multi-aggregation constant is infinite, "scalar" will be 0.0
1779 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1806 SCIP_CALL( SCIPcheckStage(scip, "SCIPgetProbvarSum", FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE) );
1812/** return for given variables all their active counterparts; all active variables will be pairwise different
1813 * @note It does not hold that the first output variable is the active variable for the first input variable.
1815 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1848 SCIP_CALL( SCIPcheckStage(scip, "SCIPgetActiveVars", FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE) );
1862 * @note The return value of this method should be used carefully if the dual feasibility check was explictely disabled.
1907 * @note The return value of this method should be used carefully if the dual feasibility check was explictely disabled.
1927 return SCIPvarGetImplRedcost(var, scip->set, varfixing, scip->stat, scip->transprob, scip->lp);
1989/** returns lower bound of variable directly before or after the bound change given by the bound change index
2066 /* handle multi-aggregated variables depending on one variable only (possibly caused by SCIPvarFlattenAggregationGraph()) */
2116 return var->data.negate.constant - SCIPgetVarUbAtIndex(scip, var->negatedvar, bdchgidx, after);
2125/** returns upper bound of variable directly before or after the bound change given by the bound change index
2202 /* handle multi-aggregated variables depending on one variable only (possibly caused by SCIPvarFlattenAggregationGraph()) */
2252 return var->data.negate.constant - SCIPgetVarLbAtIndex(scip, var->negatedvar, bdchgidx, after);
2261/** returns lower or upper bound of variable directly before or after the bound change given by the bound change index
2281/** returns whether the binary variable was fixed at the time given by the bound change index */
2292 /* check the current bounds first in order to decide at which bound change information we have to look
2295 return ((SCIPvarGetLbLocal(var) > 0.5 && SCIPgetVarLbAtIndex(scip, var, bdchgidx, after) > 0.5)
2312 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPgetVarSol", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
2320 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
2339 SCIP_CALL( SCIPcheckStage(scip, "SCIPgetVarSols", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
2357 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
2375 SCIP_CALL( SCIPcheckStage(scip, "SCIPclearRelaxSolVals", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
2398 * this solution can be filled by the relaxation handlers and can be used by heuristics and for separation;
2403 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
2410 * @note This method incrementally updates the objective value of the relaxation solution. If the whole solution
2411 * should be updated, using SCIPsetRelaxSolVals() instead or calling SCIPclearRelaxSolVals() before setting
2423 SCIP_CALL( SCIPcheckStage(scip, "SCIPsetRelaxSolVal", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
2435/** sets the values of the given variables in the global relaxation solution and informs SCIP about the validity
2437 * this solution can be filled by the relaxation handlers and can be used by heuristics and for separation;
2440 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
2462 SCIP_CALL( SCIPcheckStage(scip, "SCIPsetRelaxSolVals", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
2478/** sets the values of the variables in the global relaxation solution to the values in the given primal solution
2479 * and informs SCIP about the validity and whether the solution can be enforced via linear cuts;
2480 * the relaxation solution can be filled by the relaxation handlers and might be used by heuristics and for separation
2482 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
2503 SCIP_CALL( SCIPcheckStage(scip, "SCIPsetRelaxSolValsSol", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
2518 SCIPrelaxationSetSolObj(scip->relaxation, SCIPsolGetObj(sol, scip->set, scip->transprob, scip->origprob));
2543 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPisRelaxSolValid", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
2548/** informs SCIP that the relaxation solution is valid and whether the relaxation can be enforced through linear cuts
2550 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
2565 SCIP_CALL( SCIPcheckStage(scip, "SCIPmarkRelaxSolValid", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
2575 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
2588 SCIP_CALL( SCIPcheckStage(scip, "SCIPmarkRelaxSolInvalid", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
2612 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPgetRelaxSolVal", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
2638 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPgetRelaxSolObj", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
2670 return (SCIPgetVarAvgCutoffs(scip, var, SCIP_BRANCHDIR_DOWNWARDS) > SCIPgetVarAvgCutoffs(scip, var, SCIP_BRANCHDIR_UPWARDS));
2676 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
2683 * @note if propagation is enabled, strong branching is not done directly on the LP, but probing nodes are created
2688 SCIP_Bool enablepropagation /**< should propagation be done before solving the strong branching LP? */
2692 SCIP_CALL( SCIPcheckStage(scip, "SCIPstartStrongbranch", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
2696 SCIPdebugMsg(scip, "starting strong branching mode%s: lpcount=%" SCIP_LONGINT_FORMAT "\n", enablepropagation ? " with propagation" : "", scip->stat->lpcount - scip->stat->nsbdivinglps);
2698 /* start probing mode to allow propagation before solving the strong branching LPs; if no propagation should be done,
2715 /* other then in SCIPstartProbing(), we do not disable collecting variable statistics during strong branching;
2719 SCIP_CALL( SCIPtreeStartProbing(scip->tree, scip->mem->probmem, scip->set, scip->lp, scip->relaxation, scip->transprob, TRUE) );
2737 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
2750 SCIP_CALL( SCIPcheckStage(scip, "SCIPendStrongbranch", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
2752 /* depending on whether the strong branching mode was started with propagation enabled or not, we end the strong
2766 /* collect all bound changes deducted during probing, which were applied at the probing root and apply them to the
2796 SCIPdebugMsg(scip, "ending strong branching with probing: %d bound changes collected\n", nbnds);
2801 /* switch back from probing to normal operation mode and restore variables and constraints to focus node */
2802 SCIP_CALL( SCIPtreeEndProbing(scip->tree, scip->reopt, scip->mem->probmem, scip->set, scip->messagehdlr, scip->stat,
2811 SCIPdebugMsg(scip, "apply probing lower bound change <%s> >= %.9g\n", SCIPvarGetName(boundchgvars[i]), bounds[i]);
2816 SCIPdebugMsg(scip, "apply probing upper bound change <%s> <= %.9g\n", SCIPvarGetName(boundchgvars[i]), bounds[i]);
2835/** analyze the strong branching for the given variable; that includes conflict analysis for infeasible branches and
2842 SCIP_Bool* downinf, /**< pointer to store whether the downwards branch is infeasible, or NULL */
2844 SCIP_Bool* downconflict, /**< pointer to store whether a conflict constraint was created for an
2866 * because the strong branching's bound change is necessary for infeasibility, it cannot be undone;
2867 * therefore, infeasible strong branchings on non-binary variables will not produce a valid conflict constraint
2877 SCIP_CALL( SCIPconflictAnalyzeStrongbranch(scip->conflict, scip->conflictstore, scip->mem->probmem, scip->set, scip->stat,
2878 scip->transprob, scip->origprob, scip->tree, scip->reopt, scip->lp, scip->branchcand, scip->eventqueue, scip->cliquetable, col, downconflict, upconflict) );
2882 /* the strong branching results can be used to strengthen the root reduced cost information which is used for example
2885 * @note Ignore the results if the LP solution of the down (up) branch LP is smaller which should not happened by
2888 if( SCIPtreeGetCurrentDepth(scip->tree) == 0 && SCIPvarIsBinary(var) && SCIPlpIsDualReliable(scip->lp) )
2896 if( col->sbdownvalid && SCIPsetFeasCeil(scip->set, col->primsol-1.0) >= col->lb - 0.5 && lpobjval < col->sbdown )
2897 SCIPvarUpdateBestRootSol(var, scip->set, SCIPvarGetUbGlobal(var), -(col->sbdown - lpobjval), lpobjval);
2898 if( col->sbupvalid && SCIPsetFeasFloor(scip->set, col->primsol+1.0) <= col->ub + 0.5 && lpobjval < col->sbup )
2899 SCIPvarUpdateBestRootSol(var, scip->set, SCIPvarGetLbGlobal(var), col->sbup - lpobjval, lpobjval);
2907 * Before calling this method, the strong branching mode must have been activated by calling SCIPstartStrongbranch();
2908 * after strong branching was done for all candidate variables, the strong branching mode must be ended by
2909 * SCIPendStrongbranch(). Since this method does not apply domain propagation before strongbranching,
2912 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
2923 SCIP_Bool idempotent, /**< should scip's state remain the same after the call (statistics, column states...), or should it be updated ? */
2926 SCIP_Bool* downvalid, /**< stores whether the returned down value is a valid dual bound, or NULL;
2930 SCIP_Bool* downinf, /**< pointer to store whether the downwards branch is infeasible, or NULL */
2932 SCIP_Bool* downconflict, /**< pointer to store whether a conflict constraint was created for an
2952 SCIP_CALL( SCIPcheckStage(scip, "SCIPgetVarStrongbranchFrac", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
2970 SCIPerrorMessage("cannot get strong branching information on non-COLUMN variable <%s>\n", SCIPvarGetName(var));
2979 SCIPerrorMessage("cannot get strong branching information on variable <%s> not in current LP\n", SCIPvarGetName(var));
2992 SCIP_CALL( SCIPcolGetStrongbranch(col, FALSE, scip->set, scip->stat, scip->transprob, scip->lp, itlim, !idempotent, !idempotent,
3015 pseudoobjval = SCIPlpGetModifiedProvedPseudoObjval(scip->lp, scip->set, var, oldbound, newbound, boundtype);
3017 pseudoobjval = SCIPlpGetModifiedPseudoObjval(scip->lp, scip->set, scip->transprob, var, oldbound, newbound, boundtype);
3040 /* check, if the branchings are infeasible; in exact solving mode, we cannot trust the strong branching enough to
3043 if( !(*lperror) && SCIPprobAllColsInLP(scip->transprob, scip->set, scip->lp) && !scip->set->misc_exactsolve )
3068/** create, solve, and evaluate a single strong branching child (for strong branching with propagation) */
3083 SCIP_Longint* ndomreductions, /**< pointer to store the number of domain reductions found, or NULL */
3092 SCIP_Bool* foundsol, /**< pointer to store whether a primal solution was found during strong branching */
3111 /* the down branch is infeasible due to the branching bound change; since this means that solval is not within the
3112 * bounds, this should only happen if previous strong branching calls on other variables detected bound changes which
3122 /* bound changes are applied in SCIPendStrongbranch(), which can be seen as a conflict constraint */
3133 /* the up branch is infeasible due to the branching bound change; since this means that solval is not within the
3134 * bounds, this should only happen if previous strong branching calls on other variables detected bound changes which
3144 /* bound changes are applied in SCIPendStrongbranch(), which can be seen as a conflict constraint */
3154 /* we need to ensure that we can create at least one new probing node without exceeding the maximal tree depth */
3157 /* create a new probing node for the strong branching child and apply the new bound for the variable */
3272 SCIPdebugMsg(scip, "probing LP hit %s limit\n", SCIPgetLPSolstat(scip) == SCIP_LPSOLSTAT_ITERLIMIT ? "iteration" : "time");
3274 /* we access the LPI directly, because when a time limit was hit, we cannot access objective value and dual
3275 * feasibility using the SCIPlp... methods; we should try to avoid direct calls to the LPI, but this is rather
3276 * uncritical here, because we are immediately after the SCIPsolveProbingLP() call, because we access the LPI
3289 /* we use SCIP's infinity value here because a value larger than this is counted as infeasible by SCIP */
3312 case SCIP_LPSOLSTAT_NOTSOLVED: /* should only be the case for *cutoff = TRUE or *lperror = TRUE */
3313 case SCIP_LPSOLSTAT_OBJLIMIT: /* in this case, *cutoff should be TRUE and we should not get here */
3314 case SCIP_LPSOLSTAT_INFEASIBLE: /* in this case, *cutoff should be TRUE and we should not get here */
3321 /* If columns are missing in the LP, the cutoff flag may be wrong. Therefore, we need to set it and the valid pointer
3332 SCIPdebugMsg(scip, "error during strong branching probing LP solving: status=%d\n", SCIPgetLPSolstat(scip));
3337 /* if the subproblem was feasible, we store the local bounds of the variables after propagation and (possibly)
3339 * @todo do this after propagation? should be able to get valid bounds more often, but they might be weaker
3356 /* update newlbs and newubs: take the weaker of the already stored bounds and the current local bounds */
3378 * Before calling this method, the strong branching mode must have been activated by calling SCIPstartStrongbranch();
3379 * after strong branching was done for all candidate variables, the strong branching mode must be ended by
3380 * SCIPendStrongbranch(). Since this method applies domain propagation before strongbranching, propagation has to be be
3383 * Before solving the strong branching LP, domain propagation can be performed. The number of propagation rounds
3386 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
3393 * @warning When using this method, LP banching candidates and solution values must be copied beforehand, because
3406 SCIP_Bool* downvalid, /**< stores whether the returned down value is a valid dual bound, or NULL;
3410 SCIP_Longint* ndomredsdown, /**< pointer to store the number of domain reductions down, or NULL */
3412 SCIP_Bool* downinf, /**< pointer to store whether the downwards branch is infeasible, or NULL */
3414 SCIP_Bool* downconflict, /**< pointer to store whether a conflict constraint was created for an
3450 SCIP_CALL( SCIPcheckStage(scip, "SCIPgetVarStrongbranchWithPropagation", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
3456 * If this is not the case, we may still return that the up and down dual bounds are valid, because the branching
3458 * However, we must not set the downinf or upinf pointers to TRUE based on the dual bound, because we cannot
3463 /* if maxproprounds is -2, change it to 0, which for the following calls means using the parameter settings */
3503 SCIPerrorMessage("cannot get strong branching information on non-COLUMN variable <%s>\n", SCIPvarGetName(var));
3512 SCIPerrorMessage("cannot get strong branching information on variable <%s> not in current LP\n", SCIPvarGetName(var));
3519 SCIPdebugMsg(scip, "strong branching on var <%s>: solval=%g, lb=%g, ub=%g\n", SCIPvarGetName(var), solval,
3522 /* the up branch is infeasible due to the branching bound change; since this means that solval is not within the
3523 * bounds, this should only happen if previous strong branching calls on other variables detected bound changes which
3536 /* bound changes are applied in SCIPendStrongbranch(), which can be seen as a conflict constraint */
3547 /* the down branch is infeasible due to the branching bound change; since this means that solval is not within the
3548 * bounds, this should only happen if previous strong branching calls on other variables detected bound changes which
3561 /* bound changes are applied in SCIPendStrongbranch(), which can be seen as a conflict constraint */
3572 /* We now do strong branching by creating the two potential child nodes as probing nodes and solving them one after
3573 * the other. We will stop when the first child is detected infeasible, saving the effort we would need for the
3574 * second child. Since empirically, the up child tends to be infeasible more often, we do strongbranching first on
3597 SCIP_CALL( performStrongbranchWithPropagation(scip, var, downchild, firstchild || cutoff, propagate, newub, itlim, maxproprounds,
3598 down, &downvalidlocal, ndomredsdown, downconflict, lperror, vars, nvars, newlbs, newubs, &foundsol, &cutoff) );
3607 && ( SCIPvarGetLbLocal(var) > newub + 0.5 || SCIPconflictGetNConflicts(scip->conflict) > oldnconflicts ) )
3612 if( foundsol && allcolsinlp && SCIPisGE(scip, upvalidlocal ? *up : lpobjval, SCIPgetCutoffbound(scip)) )
3623 SCIP_CALL( performStrongbranchWithPropagation(scip, var, downchild, firstchild || cutoff, propagate, newlb, itlim, maxproprounds,
3624 up, &upvalidlocal, ndomredsup, upconflict, lperror, vars, nvars, newlbs, newubs, &foundsol, &cutoff) );
3633 && ( SCIPvarGetUbLocal(var) < newlb - 0.5 || SCIPconflictGetNConflicts(scip->conflict) > oldnconflicts ) )
3638 if( foundsol && allcolsinlp && SCIPisGE(scip, downvalidlocal ? *down : lpobjval, SCIPgetCutoffbound(scip)) )
3655 if( ( downinf == NULL || !(*downinf) ) && ( upinf == NULL || !(*upinf) ) && !SCIPisZero(scip, SCIPvarGetObj(var)) )
3674 pseudoobjval = SCIPlpGetModifiedProvedPseudoObjval(scip->lp, scip->set, var, oldbound, newbound, boundtype);
3676 pseudoobjval = SCIPlpGetModifiedPseudoObjval(scip->lp, scip->set, scip->transprob, var, oldbound, newbound, boundtype);
3713 *down, *up, downvalidlocal, upvalidlocal, scip->stat->nsbdivinglpiterations - oldniters, itlim);
3726/** gets strong branching information on column variable x with integral LP solution value (val); that is, the down branch
3729 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
3736 * @note If the integral LP solution value is the lower or upper bound of the variable, the corresponding branch will be
3743 SCIP_Bool idempotent, /**< should scip's state remain the same after the call (statistics, column states...), or should it be updated ? */
3746 SCIP_Bool* downvalid, /**< stores whether the returned down value is a valid dual bound, or NULL;
3750 SCIP_Bool* downinf, /**< pointer to store whether the downwards branch is infeasible, or NULL */
3752 SCIP_Bool* downconflict, /**< pointer to store whether a conflict constraint was created for an
3771 SCIP_CALL( SCIPcheckStage(scip, "SCIPgetVarStrongbranchInt", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
3789 SCIPerrorMessage("cannot get strong branching information on non-COLUMN variable <%s>\n", SCIPvarGetName(var));
3798 SCIPerrorMessage("cannot get strong branching information on variable <%s> not in current LP\n", SCIPvarGetName(var));
3811 SCIP_CALL( SCIPcolGetStrongbranch(col, TRUE, scip->set, scip->stat, scip->transprob, scip->lp, itlim, !idempotent, !idempotent,
3834 pseudoobjval = SCIPlpGetModifiedProvedPseudoObjval(scip->lp, scip->set, var, oldbound, newbound, boundtype);
3836 pseudoobjval = SCIPlpGetModifiedPseudoObjval(scip->lp, scip->set, scip->transprob, var, oldbound, newbound, boundtype);
3859 /* check, if the branchings are infeasible; in exact solving mode, we cannot trust the strong branching enough to
3862 if( !(*lperror) && SCIPprobAllColsInLP(scip->transprob, scip->set, scip->lp) && !scip->set->misc_exactsolve )
3889 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
3903 SCIP_Bool* downvalid, /**< stores whether the returned down values are valid dual bounds, or NULL;
3907 SCIP_Bool* downinf, /**< array to store whether the downward branches are infeasible, or NULL */
3920 SCIP_CALL( SCIPcheckStage(scip, "SCIPgetVarsStrongbranchesFrac", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
3951 SCIPerrorMessage("cannot get strong branching information on non-COLUMN variable <%s>\n", SCIPvarGetName(var));
3962 SCIPerrorMessage("cannot get strong branching information on variable <%s> not in current LP\n", SCIPvarGetName(var));
3977 SCIP_CALL( SCIPcolGetStrongbranches(cols, nvars, FALSE, scip->set, scip->stat, scip->transprob, scip->lp, itlim,
3980 /* check, if the branchings are infeasible; in exact solving mode, we cannot trust the strong branching enough to
3983 if( !(*lperror) && SCIPprobAllColsInLP(scip->transprob, scip->set, scip->lp) && !scip->set->misc_exactsolve )
4000 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
4014 SCIP_Bool* downvalid, /**< stores whether the returned down values are valid dual bounds, or NULL;
4018 SCIP_Bool* downinf, /**< array to store whether the downward branches are infeasible, or NULL */
4033 SCIP_CALL( SCIPcheckStage(scip, "SCIPgetVarsStrongbranchesInt", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
4063 SCIPerrorMessage("cannot get strong branching information on non-COLUMN variable <%s>\n", SCIPvarGetName(var));
4074 SCIPerrorMessage("cannot get strong branching information on variable <%s> not in current LP\n", SCIPvarGetName(var));
4089 SCIP_CALL( SCIPcolGetStrongbranches(cols, nvars, TRUE, scip->set, scip->stat, scip->transprob, scip->lp, itlim,
4092 /* check, if the branchings are infeasible; in exact solving mode, we cannot trust the strong branching enough to
4095 if( !(*lperror) && SCIPprobAllColsInLP(scip->transprob, scip->set, scip->lp) && !scip->set->misc_exactsolve )
4110/** get LP solution status of last strong branching call (currently only works for strong branching with propagation) */
4122/** gets strong branching information on COLUMN variable of the last SCIPgetVarStrongbranch() call;
4123 * returns values of SCIP_INVALID, if strong branching was not yet called on the given variable;
4124 * keep in mind, that the returned old values may have nothing to do with the current LP solution
4126 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
4138 SCIP_Bool* downvalid, /**< stores whether the returned down value is a valid dual bound, or NULL;
4142 SCIP_Real* solval, /**< stores LP solution value of variable at the last strong branching call, or NULL */
4146 SCIP_CALL( SCIPcheckStage(scip, "SCIPgetVarStrongbranchLast", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, FALSE, FALSE, FALSE) );
4154 SCIPcolGetStrongbranchLast(SCIPvarGetCol(var), down, up, downvalid, upvalid, solval, lpobjval);
4161 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
4180 SCIP_CALL( SCIPcheckStage(scip, "SCIPsetVarStrongbranchData", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
4188 SCIPcolSetStrongbranchData(SCIPvarGetCol(var), scip->set, scip->stat, scip->lp, lpobjval, primsol,
4196 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
4212 SCIP_CALL( SCIPcheckStage(scip, "SCIPtryStrongbranchLPSol", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
4265/** gets node number of the last node in current branch and bound run, where strong branching was used on the
4268 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
4288 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPgetVarStrongbranchNode", FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE) );
4298/** if strong branching was already applied on the variable at the current node, returns the number of LPs solved after
4302 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
4322 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPgetVarStrongbranchLPAge", FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE) );
4334 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
4354 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPgetVarNStrongbranchs", FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE) );
4366 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
4390 SCIP_CALL( SCIPcheckStage(scip, "SCIPaddVarLocksType", FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE) );
4409 SCIP_CALL( SCIPvarAddLocks(var, scip->mem->probmem, scip->set, scip->eventqueue, locktype, nlocksdown, nlocksup) );
4420 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
4447 SCIP_CALL( SCIPcheckStage(scip, "SCIPaddVarLocks", FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE) );
4455 * this method should be called whenever the lock status of a variable in a constraint changes, for example if
4456 * the coefficient of the variable changed its sign or if the left or right hand sides of the constraint were
4459 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
4486 SCIP_CALL( SCIPcheckStage(scip, "SCIPlockVarCons", FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE) );
4530 SCIP_CALL( SCIPvarAddLocks(var, scip->mem->probmem, scip->set, scip->eventqueue, (SCIP_LOCKTYPE) i, nlocksdown[i], nlocksup[i]) );
4540/** remove locks of type @p locktype of variable with respect to the lock status of the constraint and its negation;
4541 * this method should be called whenever the lock status of a variable in a constraint changes, for example if
4542 * the coefficient of the variable changed its sign or if the left or right hand sides of the constraint were
4545 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
4572 SCIP_CALL( SCIPcheckStage(scip, "SCIPunlockVarCons", FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE) );
4615 SCIP_CALL( SCIPvarAddLocks(var, scip->mem->probmem, scip->set, scip->eventqueue, (SCIP_LOCKTYPE) i, -nlocksdown[i], -nlocksup[i]) );
4627 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
4642 SCIP_CALL( SCIPcheckStage(scip, "SCIPchgVarObj", FALSE, TRUE, TRUE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE) );
4657 SCIP_CALL( SCIPvarChgObj(var, scip->mem->probmem, scip->set, scip->origprob, scip->primal, scip->lp, scip->eventqueue, newobj) );
4664 SCIP_CALL( SCIPvarChgObj(var, scip->mem->probmem, scip->set, scip->transprob, scip->primal, scip->lp, scip->eventqueue, newobj) );
4675 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
4691 SCIP_CALL( SCIPcheckStage(scip, "SCIPaddVarObj", FALSE, TRUE, TRUE, FALSE, FALSE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE) );
4699 SCIP_CALL( SCIPvarAddObj(var, scip->mem->probmem, scip->set, scip->stat, scip->transprob, scip->origprob, scip->primal,
4707 SCIP_CALL( SCIPvarAddObj(var, scip->mem->probmem, scip->set, scip->stat, scip->transprob, scip->origprob, scip->primal,
4717/** returns the adjusted (i.e. rounded, if the given variable is of integral type) lower bound value;
4720 * @return adjusted lower bound for the given variable; the bound of the variable is not changed
4742 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPadjustedVarLb", FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE) );
4749/** returns the adjusted (i.e. rounded, if the given variable is of integral type) upper bound value;