Scippy

    SCIP

    Solving Constraint Integer Programs

    SCIP_ConsNonlinear_BilinTerm Struct Reference

    Detailed Description

    bilinear term structure

    This can represent a product which

    • explicitly exists in the problem and is under- and/or overestimated by a single auxiliary variable stored as var in the union aux (case nauxexprs = 0) or
    • is involved in bilinear relations implicitly given by linear constraints with binary variables, and is under- and/or overestimated by linear expression(s) stored as exprs in the union aux (case nauxexprs > 0).

    An explicitly existing product can also be involved in implicit relations, then it will be stored as in the second case.

    Definition at line 78 of file cons_nonlinear.h.

    #include <cons_nonlinear.h>

    Data Fields

    SCIP_VARx
     
    SCIP_VARy
     
    union {
       SCIP_CONSNONLINEAR_AUXEXPR **   exprs
     
       SCIP_VAR *   var
     
    aux
     
    int nauxexprs
     
    int auxexprssize
     
    int nlockspos
     
    int nlocksneg
     
    SCIP_Bool existing
     

    Field Documentation

    ◆ x

    ◆ y

    ◆ exprs

    SCIP_CONSNONLINEAR_AUXEXPR** SCIP_ConsNonlinear_BilinTerm::exprs

    ◆ var

    SCIP_VAR* SCIP_ConsNonlinear_BilinTerm::var

    ◆ 

    ◆ nauxexprs

    int SCIP_ConsNonlinear_BilinTerm::nauxexprs

    ◆ auxexprssize

    int SCIP_ConsNonlinear_BilinTerm::auxexprssize

    size of the aux.exprs array

    Definition at line 88 of file cons_nonlinear.h.

    Referenced by bilinearTermsInsertEntry(), and bilinTermAddAuxExpr().

    ◆ nlockspos

    int SCIP_ConsNonlinear_BilinTerm::nlockspos

    number of positive expression locks

    Definition at line 89 of file cons_nonlinear.h.

    Referenced by bilinearTermsInsertEntry(), and SCIPinsertBilinearTermImplicitNonlinear().

    ◆ nlocksneg

    int SCIP_ConsNonlinear_BilinTerm::nlocksneg

    number of negative expression locks

    Definition at line 90 of file cons_nonlinear.h.

    Referenced by bilinearTermsInsertEntry(), and SCIPinsertBilinearTermImplicitNonlinear().

    ◆ existing

    SCIP_Bool SCIP_ConsNonlinear_BilinTerm::existing

    does the product exist explicitly in the problem?

    Definition at line 91 of file cons_nonlinear.h.

    Referenced by bilinearTermsInsertEntry(), markRowsXj(), and SCIPinsertBilinearTermImplicitNonlinear().