scip_nlp.c
Go to the documentation of this file.
34/*---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9----+----0----+----1----+----2*/
61 * If the NLP relaxation is enabled, then SCIP will construct the NLP relaxation when the solving process is about to begin.
78 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPisNLPEnabled", FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE) );
85 * This method is typically called by a constraint handler that handles constraints that have a nonlinear representation as nonlinear rows, e.g., cons_nonlinear.
87 * The function should be called before the branch-and-bound process is initialized, e.g., when presolve is exiting.
99 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPenableNLP", FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE) );
114 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPisNLPConstructed", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE) );
130 SCIP_CALL( SCIPcheckStage(scip, "SCIPhasNLPContinuousNonlinearity", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE) );
138 SCIP_CALL( SCIPnlpHasContinuousNonlinearity(scip->nlp, scip->mem->probmem, scip->set, scip->stat, result) );
155 SCIP_CALL( SCIPcheckStage(scip, "SCIPgetNLPVarsData", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE) );
183 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPgetNLPVars", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE) );
205 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPgetNNLPVars", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE) );
217/** computes for each variables the number of NLP rows in which the variable appears in the nonlinear part
225 int* nlcount /**< an array of length at least SCIPnlpGetNVars() to store nonlinearity counts of variables */
228 SCIP_CALL( SCIPcheckStage(scip, "SCIPgetNLPVarsNonlinearity", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE) );
236 SCIP_CALL( SCIPnlpGetVarsNonlinearity(scip->nlp, scip->mem->probmem, scip->set, scip->stat, nlcount) );
251 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPgetNLPVarsLbDualsol", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE) );
273 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPgetNLPVarsUbDualsol", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE) );
297 SCIP_CALL( SCIPcheckStage(scip, "SCIPgetNLPNlRowsData", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE) );
323 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPgetNLPNlRows", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE) );
345 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPgetNNLPNlRows", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE) );
359 * Reports counts on the current number of linear rows, convex inequalities, nonconvex inequalities, and nonlinear equalities or ranged rows.
360 * - A nonlinear inequality with infinity left-hand-side is accounted as convex if its expression has been marked as convex.
361 * - A nonlinear inequality with infinity right-hand-side is accounted as convex if its expression has been marked as concave.
362 * - Other nonlinear rows are accounted as nonconvex. Note that convexity for a nonlinear row may just not have been detected.
374 int* nnonlineareq /**< buffer to store number of nonlinear equalities or ranged rows in NLP, or NULL */
377 SCIP_CALL( SCIPcheckStage(scip, "SCIPgetNLPNlRowsStat", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE) );
401 SCIP_CALL( SCIPcheckStage(scip, "SCIPaddNlRow", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE) );
429 SCIP_CALL( SCIPcheckStage(scip, "SCIPdelNlRow", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE) );
452 SCIP_CALL( SCIPcheckStage(scip, "SCIPflushNLP", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE) );
467 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
476 SCIP_Real* initialguess /**< values of initial guess (corresponding to variables from SCIPgetNLPVarsData), or NULL to use no start point */
479 SCIP_CALL( SCIPcheckStage(scip, "SCIPsetNLPInitialGuess", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE) );
494 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
503 SCIP_SOL* sol /**< solution which values should be taken as initial guess, or NULL for LP solution */
508 SCIP_CALL( SCIPcheckStage(scip, "SCIPsetNLPInitialGuessSol", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE) );
517 SCIP_CALL( SCIPgetSolVals(scip, sol, SCIPnlpGetNVars(scip->nlp), SCIPnlpGetVars(scip->nlp), vals) );
534 * SCIP_CALL( SCIPsolveNLPParam(scip, (SCIP_NLPPARAM){ SCIP_NLPPARAM_DEFAULT(scip), .iterlimit = 42 }) );
538 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
550 SCIP_CALL( SCIPcheckStage(scip, "SCIPsolveNLPParam", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE) );
558 SCIP_CALL( SCIPnlpSolve(scip->nlp, SCIPblkmem(scip), scip->set, scip->messagehdlr, scip->stat, scip->primal, scip->tree, ¶m) );
565#pragma message ( "Warning: designated initializers not supported by this version of MSVC. Parameters given to NLP solves may be ignored." )
578 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPgetNLPSolstat", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE) );
600 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPgetNLPTermstat", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE) );
614 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
626 SCIP_CALL( SCIPcheckStage(scip, "SCIPgetNLPStatistics", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE) );
649 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPgetNLPObjval", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE) );
675 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPhasNLPSolution", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE) );
687/** gets fractional variables of last NLP solution along with solution values and fractionalities
689 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
699 SCIP_Real** fracvarssol, /**< pointer to store the array of NLP fractional variables solution values, or NULL */
700 SCIP_Real** fracvarsfrac, /**< pointer to store the array of NLP fractional variables fractionalities, or NULL */
702 int* npriofracvars /**< pointer to store the number of NLP fractional variables with maximal branching priority, or NULL */
705 SCIP_CALL( SCIPcheckStage(scip, "SCIPgetNLPFracVars", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE) );
713 SCIP_CALL( SCIPnlpGetFracVars(scip->nlp, SCIPblkmem(scip), scip->set, scip->stat, fracvars, fracvarssol, fracvarsfrac, nfracvars, npriofracvars) );
720 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
732 SCIP_CALL( SCIPcheckStage(scip, "SCIPwriteNLP", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE) );
740 SCIP_CALL( SCIPnlpWrite(scip->nlp, scip->mem->probmem, scip->set, scip->stat, scip->messagehdlr, filename) );
747 * @warning With the NLPI and its problem, all methods defined in \ref scip_nlpi.h and \ref pub_nlpi.h can be used.
748 * It needs to be ensured that the full internal state of the NLPI does not change or is recovered completely
749 * after the end of the method that uses the NLPI. In particular, if the NLP or its solution is manipulated
750 * (e.g. by calling one of the SCIPaddNlpi...() or the SCIPsolveNlpi() method), one has to check in advance
751 * whether the NLP is currently solved. If this is the case, one has to make sure that the internal solution
755 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
771 SCIP_CALL( SCIPcheckStage(scip, "SCIPgetNLPI", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE) );
792 * Makes functions SCIPchgVarObjDiveNLP(), SCIPchgVarBoundsDiveNLP() and SCIPchgVarsBoundsDiveNLP() available.
795 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
806 SCIP_CALL( SCIPcheckStage(scip, "SCIPstartDiveNLP", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE) );
821 * Resets changes made by SCIPchgVarObjDiveNLP(), SCIPchgVarBoundsDiveNLP(), and SCIPchgVarsBoundsDiveNLP().
823 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
834 SCIP_CALL( SCIPcheckStage(scip, "SCIPendDiveNLP", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE) );
849 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
862 SCIP_CALL( SCIPcheckStage(scip, "SCIPchgVarObjDiveNLP", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE) );
872 SCIP_CALL( SCIPnlpChgVarObjDive(scip->nlp, SCIPblkmem(scip), scip->set, scip->stat, var, coef) );
879 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
893 SCIP_CALL( SCIPcheckStage(scip, "SCIPchgVarBoundsDiveNLP", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE) );
910 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
925 SCIP_CALL( SCIPcheckStage(scip, "SCIPchgVarsBoundsDiveNLP", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE) );
946 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
968 SCIP_CALL( SCIPcheckStage(scip, "SCIPcreateNlRow", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE) );
978 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
994 SCIP_CALL( SCIPcheckStage(scip, "SCIPcreateEmptyNlRow", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE) );
1004 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1018 SCIP_CALL( SCIPcheckStage(scip, "SCIPcreateNlRowFromRow", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE) );
1027 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1040 SCIP_CALL( SCIPcheckStage(scip, "SCIPcaptureNlRow", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE) );
1049 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1063 SCIP_CALL( SCIPcheckStage(scip, "SCIPreleaseNlRow", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, FALSE, TRUE, FALSE, FALSE) );
1072 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1086 SCIP_CALL( SCIPcheckStage(scip, "SCIPchgNlRowLhs", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE) );
1095 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1109 SCIP_CALL( SCIPcheckStage(scip, "SCIPchgNlRowRhs", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE) );
1118 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1132 SCIP_CALL( SCIPcheckStage(scip, "SCIPchgNlRowConstant", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE) );
1153 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1168 SCIP_CALL( SCIPcheckStage(scip, "SCIPaddLinearCoefToNlRow", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE) );
1170 SCIP_CALL( SCIPnlrowAddLinearCoef(nlrow, scip->mem->probmem, scip->set, scip->stat, scip->nlp, var, val) );
1177 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1198 SCIP_CALL( SCIPcheckStage(scip, "SCIPaddLinearCoefsToNlRow", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE) );
1203 SCIP_CALL( SCIPnlrowAddLinearCoef(nlrow, scip->mem->probmem, scip->set, scip->stat, scip->nlp, vars[v], vals[v]) );
1214 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1231 SCIP_CALL( SCIPcheckStage(scip, "SCIPchgNlRowLinearCoef", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE) );
1233 SCIP_CALL( SCIPnlrowChgLinearCoef(nlrow, scip->mem->probmem, scip->set, scip->stat, scip->nlp, var, coef) );
1240 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1254 SCIP_CALL( SCIPcheckStage(scip, "SCIPsetNlRowExpr", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE) );
1256 SCIP_CALL( SCIPnlrowChgExpr(nlrow, scip->mem->probmem, scip->set, scip->stat, scip->nlp, expr) );
1266 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1279 SCIP_CALL( SCIPcheckStage(scip, "SCIPrecalcNlRowNLPActivity", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
1287 SCIP_CALL( SCIPnlrowRecalcNLPActivity(nlrow, scip->mem->probmem, scip->set, scip->stat, scip->primal, scip->tree, scip->nlp) );
1296 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1309 SCIP_CALL( SCIPcheckStage(scip, "SCIPgetNlRowNLPActivity", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE) );
1317 SCIP_CALL( SCIPnlrowGetNLPActivity(nlrow, scip->mem->probmem, scip->set, scip->stat, scip->primal, scip->tree, scip->nlp, activity) );
1322/** gives the feasibility of a nonlinear row in the last NLP solution: negative value means infeasibility
1326 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1339 SCIP_CALL( SCIPcheckStage(scip, "SCIPgetNlRowNLPFeasibility", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE) );
1347 SCIP_CALL( SCIPnlrowGetNLPFeasibility(nlrow, scip->mem->probmem, scip->set, scip->stat, scip->primal, scip->tree, scip->nlp, feasibility) );
1354 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1366 SCIP_CALL( SCIPcheckStage(scip, "SCIPrecalcNlRowPseudoActivity", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE) );
1368 SCIP_CALL( SCIPnlrowRecalcPseudoActivity(nlrow, scip->mem->probmem, scip->set, scip->stat, scip->transprob, scip->primal, scip->tree, scip->lp) );
1377 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1390 SCIP_CALL( SCIPcheckStage(scip, "SCIPgetNlRowPseudoActivity", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE) );
1392 SCIP_CALL( SCIPnlrowGetPseudoActivity(nlrow, scip->mem->probmem, scip->set, scip->stat, scip->transprob, scip->primal, scip->tree, scip->lp, pseudoactivity) );
1397/** gives the feasibility of a nonlinear row for the current pseudo solution: negative value means infeasibility
1401 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1414 SCIP_CALL( SCIPcheckStage(scip, "SCIPgetNlRowPseudoFeasibility", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE) );
1416 SCIP_CALL( SCIPnlrowGetPseudoFeasibility(nlrow, scip->mem->probmem, scip->set, scip->stat, scip->transprob, scip->primal, scip->tree, scip->lp, pseudofeasibility) );
1423 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1435 SCIP_CALL( SCIPcheckStage(scip, "SCIPrecalcNlRowActivity", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE) );
1437 if( scip->nlp != NULL && SCIPnlpHasCurrentNodeNLP(scip->nlp) && SCIPnlpHasSolution(scip->nlp) )
1439 SCIP_CALL( SCIPnlrowRecalcNLPActivity(nlrow, scip->mem->probmem, scip->set, scip->stat, scip->primal, scip->tree, scip->nlp) );
1443 SCIP_CALL( SCIPnlrowRecalcPseudoActivity(nlrow, scip->mem->probmem, scip->set, scip->stat, scip->transprob, scip->primal, scip->tree, scip->lp) );
1453 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1466 SCIP_CALL( SCIPcheckStage(scip, "SCIPgetNlRowActivity", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE) );
1468 if( scip->nlp != NULL && SCIPnlpHasCurrentNodeNLP(scip->nlp) && SCIPnlpHasSolution(scip->nlp) )
1470 SCIP_CALL( SCIPnlrowGetNLPActivity(nlrow, scip->mem->probmem, scip->set, scip->stat, scip->primal, scip->tree, scip->nlp, activity) );
1474 SCIP_CALL( SCIPnlrowGetPseudoActivity(nlrow, scip->mem->probmem, scip->set, scip->stat, scip->transprob, scip->primal, scip->tree, scip->lp, activity) );
1484 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1497 SCIP_CALL( SCIPcheckStage(scip, "SCIPgetNlRowFeasibility", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE) );
1499 if( scip->nlp != NULL && SCIPnlpHasCurrentNodeNLP(scip->nlp) && SCIPnlpHasSolution(scip->nlp) )
1501 SCIP_CALL( SCIPnlrowGetNLPFeasibility(nlrow, scip->mem->probmem, scip->set, scip->stat, scip->primal, scip->tree, scip->nlp, feasibility) );
1505 SCIP_CALL( SCIPnlrowGetPseudoFeasibility(nlrow, scip->mem->probmem, scip->set, scip->stat, scip->transprob, scip->primal, scip->tree, scip->lp, feasibility) );
1511/** gives the activity of a nonlinear row for the given primal solution or NLP solution or pseudo solution
1515 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1529 SCIP_CALL( SCIPcheckStage(scip, "SCIPgetNlRowSolActivity", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE) );
1533 SCIP_CALL( SCIPnlrowGetSolActivity(nlrow, scip->mem->probmem, scip->set, scip->stat, sol, activity) );
1535 else if( scip->nlp != NULL && SCIPnlpHasCurrentNodeNLP(scip->nlp) && SCIPnlpHasSolution(scip->nlp) )
1537 SCIP_CALL( SCIPnlrowGetNLPActivity(nlrow, scip->mem->probmem, scip->set, scip->stat, scip->primal, scip->tree, scip->nlp, activity) );
1541 SCIP_CALL( SCIPnlrowGetPseudoActivity(nlrow, scip->mem->probmem, scip->set, scip->stat, scip->transprob, scip->primal, scip->tree, scip->lp, activity) );
1551 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1565 SCIP_CALL( SCIPcheckStage(scip, "SCIPgetNlRowSolFeasibility", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE) );
1569 SCIP_CALL( SCIPnlrowGetSolFeasibility(nlrow, scip->mem->probmem, scip->set, scip->stat, sol, feasibility) );
1571 else if( scip->nlp != NULL && SCIPnlpHasCurrentNodeNLP(scip->nlp) && SCIPnlpHasSolution(scip->nlp) )
1573 SCIP_CALL( SCIPnlrowGetNLPFeasibility(nlrow, scip->mem->probmem, scip->set, scip->stat, scip->primal, scip->tree, scip->nlp, feasibility) );
1577 SCIP_CALL( SCIPnlrowGetPseudoFeasibility(nlrow, scip->mem->probmem, scip->set, scip->stat, scip->transprob, scip->primal, scip->tree, scip->lp, feasibility) );
1585 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1600 SCIP_CALL( SCIPcheckStage(scip, "SCIPgetNlRowActivityBounds", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE) );
1602 SCIP_CALL( SCIPnlrowGetActivityBounds(nlrow, scip->mem->probmem, scip->set, scip->stat, minactivity, maxactivity) );
1609 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1625 SCIP_CALL( SCIPcheckStage(scip, "SCIPprintNlRow", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE) );
1627 SCIP_CALL( SCIPnlrowPrint(nlrow, scip->mem->probmem, scip->set, scip->stat, scip->messagehdlr, file) );
methods for debugging
#define SCIPcheckStage(scip, method, init, problem, transforming, transformed, initpresolve, presolving, exitpresolve, presolved, initsolve, solving, solved, exitsolve, freetrans, freescip)
Definition: debug.h:364
SCIP_RETCODE SCIPchgVarsBoundsDiveNLP(SCIP *scip, int nvars, SCIP_VAR **vars, SCIP_Real *lbs, SCIP_Real *ubs)
Definition: scip_nlp.c:917
SCIP_RETCODE SCIPchgVarBoundsDiveNLP(SCIP *scip, SCIP_VAR *var, SCIP_Real lb, SCIP_Real ub)
Definition: scip_nlp.c:886
SCIP_RETCODE SCIPchgVarObjDiveNLP(SCIP *scip, SCIP_VAR *var, SCIP_Real coef)
Definition: scip_nlp.c:856
SCIP_RETCODE SCIPhasNLPContinuousNonlinearity(SCIP *scip, SCIP_Bool *result)
Definition: scip_nlp.c:125
SCIP_RETCODE SCIPsetNLPInitialGuess(SCIP *scip, SCIP_Real *initialguess)
Definition: scip_nlp.c:474
SCIP_RETCODE SCIPsolveNLPParam(SCIP *scip, SCIP_NLPPARAM param)
Definition: scip_nlp.c:545
SCIP_RETCODE SCIPgetNLPI(SCIP *scip, SCIP_NLPI **nlpi, SCIP_NLPIPROBLEM **nlpiproblem)
Definition: scip_nlp.c:762
SCIP_RETCODE SCIPgetNLPFracVars(SCIP *scip, SCIP_VAR ***fracvars, SCIP_Real **fracvarssol, SCIP_Real **fracvarsfrac, int *nfracvars, int *npriofracvars)
Definition: scip_nlp.c:696
SCIP_RETCODE SCIPsetNLPInitialGuessSol(SCIP *scip, SCIP_SOL *sol)
Definition: scip_nlp.c:501
SCIP_RETCODE SCIPgetNLPVarsNonlinearity(SCIP *scip, int *nlcount)
Definition: scip_nlp.c:223
SCIP_RETCODE SCIPgetNLPNlRowsData(SCIP *scip, SCIP_NLROW ***nlrows, int *nnlrows)
Definition: scip_nlp.c:291
SCIP_RETCODE SCIPgetNLPNlRowsStat(SCIP *scip, int *nlinear, int *nconvexineq, int *nnonconvexineq, int *nnonlineareq)
Definition: scip_nlp.c:369
SCIP_RETCODE SCIPgetNLPVarsData(SCIP *scip, SCIP_VAR ***vars, int *nvars)
Definition: scip_nlp.c:149
SCIP_RETCODE SCIPgetNLPStatistics(SCIP *scip, SCIP_NLPSTATISTICS *statistics)
Definition: scip_nlp.c:621
SCIP_RETCODE SCIPnlrowChgRhs(SCIP_NLROW *nlrow, SCIP_SET *set, SCIP_STAT *stat, SCIP_NLP *nlp, SCIP_Real rhs)
Definition: nlp.c:1432
SCIP_RETCODE SCIPnlrowCreate(SCIP_NLROW **nlrow, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, const char *name, SCIP_Real constant, int nlinvars, SCIP_VAR **linvars, SCIP_Real *lincoefs, SCIP_EXPR *expr, SCIP_Real lhs, SCIP_Real rhs, SCIP_EXPRCURV curvature)
Definition: nlp.c:883
SCIP_RETCODE SCIPnlrowRelease(SCIP_NLROW **nlrow, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat)
Definition: nlp.c:1142
SCIP_RETCODE SCIPnlrowGetNLPFeasibility(SCIP_NLROW *nlrow, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_PRIMAL *primal, SCIP_TREE *tree, SCIP_NLP *nlp, SCIP_Real *feasibility)
Definition: nlp.c:1573
SCIP_RETCODE SCIPsetNlRowExpr(SCIP *scip, SCIP_NLROW *nlrow, SCIP_EXPR *expr)
Definition: scip_nlp.c:1248
SCIP_RETCODE SCIPgetNlRowActivityBounds(SCIP *scip, SCIP_NLROW *nlrow, SCIP_Real *minactivity, SCIP_Real *maxactivity)
Definition: scip_nlp.c:1593
SCIP_RETCODE SCIPnlrowChgLinearCoef(SCIP_NLROW *nlrow, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_NLP *nlp, SCIP_VAR *var, SCIP_Real coef)
Definition: nlp.c:1293
SCIP_RETCODE SCIPaddLinearCoefToNlRow(SCIP *scip, SCIP_NLROW *nlrow, SCIP_VAR *var, SCIP_Real val)
Definition: scip_nlp.c:1161
SCIP_RETCODE SCIPcaptureNlRow(SCIP *scip, SCIP_NLROW *nlrow)
Definition: scip_nlp.c:1035
SCIP_RETCODE SCIPrecalcNlRowNLPActivity(SCIP *scip, SCIP_NLROW *nlrow)
Definition: scip_nlp.c:1274
SCIP_RETCODE SCIPnlrowGetActivityBounds(SCIP_NLROW *nlrow, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_Real *minactivity, SCIP_Real *maxactivity)
Definition: nlp.c:1780
SCIP_RETCODE SCIPcreateEmptyNlRow(SCIP *scip, SCIP_NLROW **nlrow, const char *name, SCIP_Real lhs, SCIP_Real rhs)
Definition: scip_nlp.c:986
SCIP_RETCODE SCIPnlrowGetSolFeasibility(SCIP_NLROW *nlrow, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_SOL *sol, SCIP_Real *feasibility)
Definition: nlp.c:1755
SCIP_RETCODE SCIPgetNlRowSolFeasibility(SCIP *scip, SCIP_NLROW *nlrow, SCIP_SOL *sol, SCIP_Real *feasibility)
Definition: scip_nlp.c:1558
SCIP_RETCODE SCIPchgNlRowLinearCoef(SCIP *scip, SCIP_NLROW *nlrow, SCIP_VAR *var, SCIP_Real coef)
Definition: scip_nlp.c:1222
SCIP_RETCODE SCIPgetNlRowActivity(SCIP *scip, SCIP_NLROW *nlrow, SCIP_Real *activity)
Definition: scip_nlp.c:1460
SCIP_RETCODE SCIPgetNlRowNLPFeasibility(SCIP *scip, SCIP_NLROW *nlrow, SCIP_Real *feasibility)
Definition: scip_nlp.c:1333
SCIP_RETCODE SCIPgetNlRowPseudoActivity(SCIP *scip, SCIP_NLROW *nlrow, SCIP_Real *pseudoactivity)
Definition: scip_nlp.c:1384
SCIP_RETCODE SCIPnlrowAddLinearCoef(SCIP_NLROW *nlrow, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_NLP *nlp, SCIP_VAR *var, SCIP_Real val)
Definition: nlp.c:1212
SCIP_RETCODE SCIPnlrowChgLhs(SCIP_NLROW *nlrow, SCIP_SET *set, SCIP_STAT *stat, SCIP_NLP *nlp, SCIP_Real lhs)
Definition: nlp.c:1406
SCIP_RETCODE SCIPchgNlRowRhs(SCIP *scip, SCIP_NLROW *nlrow, SCIP_Real rhs)
Definition: scip_nlp.c:1103
SCIP_RETCODE SCIPnlrowChgExpr(SCIP_NLROW *nlrow, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_NLP *nlp, SCIP_EXPR *expr)
Definition: nlp.c:1331
SCIP_RETCODE SCIPnlrowGetNLPActivity(SCIP_NLROW *nlrow, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_PRIMAL *primal, SCIP_TREE *tree, SCIP_NLP *nlp, SCIP_Real *activity)
Definition: nlp.c:1544
SCIP_RETCODE SCIPreleaseNlRow(SCIP *scip, SCIP_NLROW **nlrow)
Definition: scip_nlp.c:1058
SCIP_RETCODE SCIPgetNlRowFeasibility(SCIP *scip, SCIP_NLROW *nlrow, SCIP_Real *feasibility)
Definition: scip_nlp.c:1491
SCIP_RETCODE SCIPchgNlRowConstant(SCIP *scip, SCIP_NLROW *nlrow, SCIP_Real constant)
Definition: scip_nlp.c:1126
SCIP_RETCODE SCIPnlrowRecalcNLPActivity(SCIP_NLROW *nlrow, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_PRIMAL *primal, SCIP_TREE *tree, SCIP_NLP *nlp)
Definition: nlp.c:1492
SCIP_RETCODE SCIPrecalcNlRowActivity(SCIP *scip, SCIP_NLROW *nlrow)
Definition: scip_nlp.c:1430
SCIP_RETCODE SCIPchgNlRowLhs(SCIP *scip, SCIP_NLROW *nlrow, SCIP_Real lhs)
Definition: scip_nlp.c:1080
SCIP_RETCODE SCIPnlrowGetSolActivity(SCIP_NLROW *nlrow, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_SOL *sol, SCIP_Real *activity)
Definition: nlp.c:1704
SCIP_RETCODE SCIPnlrowPrint(SCIP_NLROW *nlrow, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_MESSAGEHDLR *messagehdlr, FILE *file)
Definition: nlp.c:1080
SCIP_RETCODE SCIPgetNlRowNLPActivity(SCIP *scip, SCIP_NLROW *nlrow, SCIP_Real *activity)
Definition: scip_nlp.c:1303
SCIP_RETCODE SCIPnlrowChgConstant(SCIP_NLROW *nlrow, SCIP_SET *set, SCIP_STAT *stat, SCIP_NLP *nlp, SCIP_Real constant)
Definition: nlp.c:1386
SCIP_RETCODE SCIPgetNlRowPseudoFeasibility(SCIP *scip, SCIP_NLROW *nlrow, SCIP_Real *pseudofeasibility)
Definition: scip_nlp.c:1408
SCIP_RETCODE SCIPprintNlRow(SCIP *scip, SCIP_NLROW *nlrow, FILE *file)
Definition: scip_nlp.c:1617
void SCIPnlrowSetCurvature(SCIP_NLP *nlp, SCIP_SET *set, SCIP_NLROW *nlrow, SCIP_EXPRCURV curvature)
Definition: nlp.c:1458
SCIP_RETCODE SCIPgetNlRowSolActivity(SCIP *scip, SCIP_NLROW *nlrow, SCIP_SOL *sol, SCIP_Real *activity)
Definition: scip_nlp.c:1522
void SCIPsetNlRowCurvature(SCIP *scip, SCIP_NLROW *nlrow, SCIP_EXPRCURV curvature)
Definition: scip_nlp.c:1140
SCIP_RETCODE SCIPnlrowGetPseudoFeasibility(SCIP_NLROW *nlrow, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_PROB *prob, SCIP_PRIMAL *primal, SCIP_TREE *tree, SCIP_LP *lp, SCIP_Real *pseudofeasibility)
Definition: nlp.c:1676
SCIP_RETCODE SCIPcreateNlRowFromRow(SCIP *scip, SCIP_NLROW **nlrow, SCIP_ROW *row)
Definition: scip_nlp.c:1012
SCIP_RETCODE SCIPnlrowCreateFromRow(SCIP_NLROW **nlrow, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_ROW *row)
Definition: nlp.c:1017
SCIP_RETCODE SCIPcreateNlRow(SCIP *scip, SCIP_NLROW **nlrow, const char *name, SCIP_Real constant, int nlinvars, SCIP_VAR **linvars, SCIP_Real *lincoefs, SCIP_EXPR *expr, SCIP_Real lhs, SCIP_Real rhs, SCIP_EXPRCURV curvature)
Definition: scip_nlp.c:954
SCIP_RETCODE SCIPnlrowRecalcPseudoActivity(SCIP_NLROW *nlrow, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_PROB *prob, SCIP_PRIMAL *primal, SCIP_TREE *tree, SCIP_LP *lp)
Definition: nlp.c:1599
SCIP_RETCODE SCIPnlrowGetPseudoActivity(SCIP_NLROW *nlrow, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_PROB *prob, SCIP_PRIMAL *primal, SCIP_TREE *tree, SCIP_LP *lp, SCIP_Real *pseudoactivity)
Definition: nlp.c:1646
SCIP_RETCODE SCIPaddLinearCoefsToNlRow(SCIP *scip, SCIP_NLROW *nlrow, int nvars, SCIP_VAR **vars, SCIP_Real *vals)
Definition: scip_nlp.c:1185
SCIP_RETCODE SCIPrecalcNlRowPseudoActivity(SCIP *scip, SCIP_NLROW *nlrow)
Definition: scip_nlp.c:1361
SCIP_RETCODE SCIPgetSolVals(SCIP *scip, SCIP_SOL *sol, int nvars, SCIP_VAR **vars, SCIP_Real *vals)
Definition: scip_sol.c:1846
memory allocation routines
Definition: multiprecision.hpp:66
SCIP_RETCODE SCIPnlpGetStatistics(SCIP_SET *set, SCIP_NLP *nlp, SCIP_NLPSTATISTICS *statistics)
Definition: nlp.c:4523
SCIP_RETCODE SCIPnlpEndDive(SCIP_NLP *nlp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat)
Definition: nlp.c:4589
SCIP_RETCODE SCIPnlpWrite(SCIP_NLP *nlp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_MESSAGEHDLR *messagehdlr, const char *fname)
Definition: nlp.c:4237
SCIP_RETCODE SCIPnlpChgVarBoundsDive(SCIP_SET *set, SCIP_NLP *nlp, SCIP_VAR *var, SCIP_Real lb, SCIP_Real ub)
Definition: nlp.c:4708
SCIP_RETCODE SCIPnlpDelNlRow(SCIP_NLP *nlp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_NLROW *nlrow)
Definition: nlp.c:3980
SCIP_RETCODE SCIPnlpChgVarObjDive(SCIP_NLP *nlp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_VAR *var, SCIP_Real coef)
Definition: nlp.c:4651
SCIP_RETCODE SCIPnlpSetInitialGuess(SCIP_SET *set, SCIP_NLP *nlp, BMS_BLKMEM *blkmem, SCIP_Real *initguess)
Definition: nlp.c:4201
SCIP_RETCODE SCIPnlpGetVarsNonlinearity(SCIP_NLP *nlp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, int *nlcount)
Definition: nlp.c:4312
void SCIPnlpGetNlRowsStat(SCIP_NLP *nlp, int *nlinear, int *nconvexineq, int *nnonconvexineq, int *nnonlineareq)
Definition: nlp.c:4449
SCIP_RETCODE SCIPnlpChgVarsBoundsDive(SCIP_NLP *nlp, SCIP_SET *set, int nvars, SCIP_VAR **vars, SCIP_Real *lbs, SCIP_Real *ubs)
Definition: nlp.c:4737
SCIP_RETCODE SCIPnlpAddNlRow(SCIP_NLP *nlp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_NLROW *nlrow)
Definition: nlp.c:3924
SCIP_RETCODE SCIPnlpFlush(SCIP_NLP *nlp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat)
Definition: nlp.c:4012
SCIP_RETCODE SCIPnlpGetFracVars(SCIP_NLP *nlp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_VAR ***fracvars, SCIP_Real **fracvarssol, SCIP_Real **fracvarsfrac, int *nfracvars, int *npriofracvars)
Definition: nlp.c:4121
SCIP_RETCODE SCIPnlpStartDive(SCIP_NLP *nlp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat)
Definition: nlp.c:4558
SCIP_RETCODE SCIPnlpSolve(SCIP_NLP *nlp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_MESSAGEHDLR *messagehdlr, SCIP_STAT *stat, SCIP_PRIMAL *primal, SCIP_TREE *tree, SCIP_NLPPARAM *nlpparam)
Definition: nlp.c:4050
SCIP_RETCODE SCIPnlpHasContinuousNonlinearity(SCIP_NLP *nlp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_Bool *result)
Definition: nlp.c:4366
internal methods for NLP management
internal methods for NLP solver interfaces
public methods for message output
public data structures and miscellaneous methods
public methods for NLP management
public methods for handling parameter settings
public methods for memory management
public methods for nonlinear relaxation
public methods for SCIP parameter handling
public methods for solutions
internal methods for global SCIP settings
Definition: struct_expr.h:106
Definition: struct_nlp.h:65
Definition: type_nlpi.h:67
Definition: type_nlpi.h:188
Definition: nlpi_all.c:56
Definition: struct_nlpi.h:47
Definition: struct_lp.h:205
Definition: struct_sol.h:74
Definition: struct_var.h:262
Definition: struct_scip.h:72
datastructures for block memory pools and memory buffers
datastructures for storing and manipulating the main problem
SCIP main data structure.
datastructures for global SCIP settings
datastructures for problem variables