lp.c
Go to the documentation of this file.
41/*---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9----+----0----+----1----+----2*/
73 * using the LP solver activity is potentially faster, but may not be consistent with the SCIP_ROW calculations
519 /* we do not save the farkas coefficient, since it can be recomputed; thus, we invalidate it here */
522 /* if the column was created after performing the storage (possibly during probing), we treat it as implicitly zero;
607 /* if the row was created after performing the storage (possibly during probing), we treat it as basic;
657#ifdef SCIP_MORE_DEBUG /* enable this to check the sortings within rows (for debugging, very slow!) */
807 /* we are only interested in variables with a finite impact, because the infinity counters should be correct */
844 /* we are only interested in variables with a finite impact, because the infinity counters should be correct */
862/* recompute the global pseudo solution value from scratch, if it was marked to be unreliable before */
886 /* we are only interested in variables with a finite impact, because the infinity counters should be correct */
968/** sorts column entries of linked rows currently in the LP such that lower row indices precede higher ones */
999/** sorts column entries of unlinked rows or rows currently not in the LP such that lower row indices precede higher
1016 SCIPsortPtrRealInt((void**)(&(col->rows[col->nlprows])), &(col->vals[col->nlprows]), &(col->linkpos[col->nlprows]), SCIProwComp, col->len - col->nlprows);
1032/** sorts row entries of linked columns currently in the LP such that lower column indices precede higher ones */
1047 SCIPsortIntPtrIntReal(row->cols_index, (void**)row->cols, row->linkpos, row->vals, row->nlpcols);
1063/** sorts row entries of unlinked columns or columns currently not in the LP such that lower column indices precede
1082 SCIPsortIntPtrIntReal(&(row->cols_index[row->nlpcols]), (void**)(&(row->cols[row->nlpcols])), &(row->linkpos[row->nlpcols]), &(row->vals[row->nlpcols]), row->len - row->nlpcols);
1100/** searches coefficient in part of the column, returns position in col vector or -1 if not found */
1175/** searches coefficient in part of the row, returns position in col vector or -1 if not found */
1267/** moves a coefficient in a column to a different place, and updates all corresponding data structures */
1363/** moves a coefficient in a row to a different place, and updates all corresponding data structures */
1484 if( (row->eventfilter->len > 0 && (row->eventfilter->eventmask & SCIP_EVENTTYPE_ROWCOEFCHANGED) != 0) )
1489 SCIP_CALL( SCIPeventqueueAdd(eventqueue, blkmem, set, NULL, NULL, NULL, row->eventfilter, &event) );
1512 if( (row->eventfilter->len > 0 && (row->eventfilter->eventmask & SCIP_EVENTTYPE_ROWCONSTCHANGED)) )
1517 SCIP_CALL( SCIPeventqueueAdd(eventqueue, blkmem, set, NULL, NULL, NULL, row->eventfilter, &event) );
1541 if( (row->eventfilter->len > 0 && !(row->eventfilter->eventmask & SCIP_EVENTTYPE_ROWSIDECHANGED)) )
1546 SCIP_CALL( SCIPeventqueueAdd(eventqueue, blkmem, set, NULL, NULL, NULL, row->eventfilter, &event) );
1552#ifdef SCIP_MORE_DEBUG /* enable this to check links between columns and rows in LP data structure (for debugging, very slow!) */
1718 /*assert(colSearchCoef(col, row) == -1);*/ /* this assert would lead to slight differences in the solution process */
1728 /* if the row is in current LP and is linked to the column, we have to insert it at the end of the linked LP rows
1742 /* in case the coefficient is integral w.r.t. numerics we explicitly round the coefficient to an integral value */
1753 /* if the column is in current LP, we have to link it to the row, because otherwise, the primal information
1758 /* this call might swap the current row with the first non-LP/not linked row, s.t. insertion position
1780 /* if the column is in current LP, now both conditions, row->cols[linkpos]->lppos >= 0 and row->linkpos[linkpos] >= 0
1812 SCIPsetDebugMsg(set, "added coefficient %g * <%s> at position %d (%d/%d) to column <%s> (nunlinked=%d)\n",
1846 /* if row is a linked LP row, move last linked LP coefficient to position of empty slot (deleted coefficient) */
1882 /* in case the coefficient is integral w.r.t. numerics we explicitly round the coefficient to an integral value */
1928 /* Euclidean norm, sum norm, and objective function scalar product only take LP columns into account */
2013 /* Euclidean norm, sum norm, and objective function scalar product only take LP columns into account */
2064 /*assert(rowSearchCoef(row, col) == -1);*/ /* this assert would lead to slight differences in the solution process */
2079 /* if the column is in current LP and is linked to the row, we have to insert it at the end of the linked LP columns
2093 /* in case the coefficient is integral w.r.t. numerics we explicitly round the coefficient to an integral value */
2106 /* if the row is in current LP, we have to link it to the column, because otherwise, the dual information
2111 /* this call might swap the current column with the first non-LP/not linked column, s.t. insertion position
2133 /* if the row is in current LP, now both conditions, col->rows[linkpos]->lppos >= 0 and col->linkpos[linkpos] >= 0
2174 SCIPsetDebugMsg(set, "added coefficient %g * <%s> at position %d (%d/%d) to row <%s> (nunlinked=%d)\n",
2212 SCIPerrorMessage("cannot delete a coefficient from the locked unmodifiable row <%s>\n", row->name);
2219 /* if column is a linked LP column, move last linked LP coefficient to position of empty slot (deleted coefficient) */
2265 SCIPerrorMessage("cannot change a coefficient of the locked unmodifiable row <%s>\n", row->name);
2269 /* in case the coefficient is integral w.r.t. numerics we explicitly round the coefficient to an integral value */
2379 /* this call might swap the current row with the first non-LP/not linked row, but this is of no harm */
2384 assert(col->nlprows == 0 || col->rows[col->nlprows-1]->cols[col->linkpos[col->nlprows-1]] == col);
2385 assert(col->nlprows == 0 || col->rows[col->nlprows-1]->linkpos[col->linkpos[col->nlprows-1]] == col->nlprows-1);
2459 /* this call might swap the current column with the first non-LP/not linked column, but this is of no harm */
2464 assert(row->nlpcols == 0 || row->cols[row->nlpcols-1]->rows[row->linkpos[row->nlpcols-1]] == row);
2465 assert(row->nlpcols == 0 || row->cols[row->nlpcols-1]->linkpos[row->linkpos[row->nlpcols-1]] == row->nlpcols-1);
2580/** checks, that parameter of type int in LP solver has the given value, ignoring unknown parameters */
2605/** checks, that parameter of type SCIP_Bool in LP solver has the given value, ignoring unknown parameters */
2616/** checks, that parameter of type SCIP_Real in LP solver has the given value, ignoring unknown parameters */
2647#define lpCutoffDisabled(set, prob, lp) (set->lp_disablecutoff == 1 || (set->lp_disablecutoff == 2 && !SCIPprobAllColsInLP(prob, set, lp)) || set->misc_exactsolve)
2668 /* if the objective limit is disabled or SCIP infinity, make sure that the LP objective limit is deactivated by
2683 /* check whether the parameter was actually changed or already was at the boundary of the LP solver's parameter range */
2722 /* check whether the parameter was actually changed or already was at the boundary of the LP solver's parameter range */
2765 /* check whether the parameter was actually changed or already was at the boundary of the LP solver's parameter range */
2808 /* check whether the parameter was actually changed or already was at the boundary of the LP solver's parameter range */
2877 /* We might only set lp->solved to false if fastmip is turned off, since the latter should be the more
3046/** sets the pricing strategy of the LP solver (given the character representation of the strategy) */
3174 assert((int) SCIP_CLOCKTYPE_CPU == 1 && (int) SCIP_CLOCKTYPE_WALL == 2); /*lint !e506*//*lint !e1564*/
3206 /* we don't check this parameter because SoPlex will always return its current random seed, not the initial one */
3417 SCIPmessageFPrintInfo(messagehdlr, file, "(obj: %.15g) [%.15g,%.15g], ", col->obj, col->lb, col->ub);
3431/** sorts column entries such that LP rows precede non-LP rows and inside both parts lower row indices precede higher ones
3487 SCIPerrorMessage("coefficient for row <%s> doesn't exist in column <%s>\n", row->name, SCIPvarGetName(col->var));
3603 SCIP_CALL( rowChgCoefPos(row, blkmem, set, eventqueue, lp, col->linkpos[pos], col->vals[pos] + incval) );
3638 * @note: Here we only consider cancellations which can occur during decreasing the oldvalue to newvalue; not the
3677 if( SCIPsetIsLT(set, lp->objsqrnorm, 0.0) || isNewValueUnreliable(set, lp->objsqrnorm, oldvalue) )
3683 /* due to numerical troubles it still can appear that lp->objsqrnorm is a little bit smaller than 0 */
3709 SCIPsetDebugMsg(set, "changing objective value of column <%s> from %f to %f\n", SCIPvarGetName(col->var), col->obj, newobj);
3725 /* in any case, when the sign of the objective (and thereby the best bound) changes, the variable has to enter the
3739 /* update original objective value, as long as we are not in diving or probing and changed objective values */
3768 SCIPsetDebugMsg(set, "changing lower bound of column <%s> from %f to %f\n", SCIPvarGetName(col->var), col->lb, newlb);
3784 /* in any case, when the best bound is zero and gets changed, the variable has to enter the LP and the LP has to be
3813 SCIPsetDebugMsg(set, "changing upper bound of column <%s> from %f to %f\n", SCIPvarGetName(col->var), col->ub, newub);
3829 /* in any case, when the best bound is zero and gets changed, the variable has to enter the LP and the LP has to be
4027/** calculates the Farkas coefficient y^T A_i of a column i using the given dual Farkas vector y */
4156/** gets the Farkas value of a column in last LP (which must be infeasible), i.e. the Farkas coefficient y^T A_i times
4309 SCIP_Bool* downvalid, /**< stores whether the returned down value is a valid dual bound, or NULL;
4367 /* if a loose variables has an infinite best bound, the LP bound is -infinity and no gain can be achieved */
4394 retcode = SCIPlpiStrongbranchInt(lp->lpi, col->lpipos, col->primsol, itlim, down == NULL ? NULL : &sbdown, up == NULL ? NULL : &sbup, &sbdownvalid, &sbupvalid, &iter);
4398 retcode = SCIPlpiStrongbranchFrac(lp->lpi, col->lpipos, col->primsol, itlim, down == NULL ? NULL : &sbdown, up == NULL ? NULL : &sbup, &sbdownvalid, &sbupvalid, &iter);
4431 iter = stat->ndualresolvelps > 0 ? (int)(2*stat->ndualresolvelpiterations / stat->ndualresolvelps)
4433 : stat->nprimalresolvelps > 0 ? (int)(2*stat->nprimalresolvelpiterations / stat->nprimalresolvelps)
4493 SCIP_Bool* downvalid, /**< stores whether the returned down values are valid dual bounds, or NULL;
4566 /* if a loose variables has an infinite best bound, the LP bound is -infinity and no gain can be achieved */
4594 SCIPsetDebugMsg(set, "performing strong branching on %d variables with %d iterations\n", ncols, itlim);
4598 retcode = SCIPlpiStrongbranchesInt(lp->lpi, lpipos, nsubcols, primsols, itlim, sbdown, sbup, sbdownvalid, sbupvalid, &iter);
4600 retcode = SCIPlpiStrongbranchesFrac(lp->lpi, lpipos, nsubcols, primsols, itlim, sbdown, sbup, sbdownvalid, sbupvalid, &iter);
4669 iter = stat->ndualresolvelps > 0 ? (int)(2*stat->ndualresolvelpiterations / stat->ndualresolvelps)
4671 : stat->nprimalresolvelps > 0 ? (int)(2*stat->nprimalresolvelpiterations / stat->nprimalresolvelps)
4703 * keep in mind, that the returned old values may have nothing to do with the current LP solution
4709 SCIP_Bool* downvalid, /**< stores whether the returned down value is a valid dual bound, or NULL;
4713 SCIP_Real* solval, /**< stores LP solution value of column at last strong branching call, or NULL */
4733/** if strong branching was already applied on the column at the current node, returns the number of LPs solved after
4748/** marks a column to be not removable from the LP in the current node because it became obsolete */
4758 /* lpRemoveObsoleteCols() does not remove a column if the node number stored in obsoletenode equals the current node number */
4896/** checks, whether the given scalar scales the given value to an integral number with error in the given bounds */
4901 SCIP_Real mindelta, /**< minimal relative allowed difference of scaled coefficient s*c and integral i */
4902 SCIP_Real maxdelta, /**< maximal relative allowed difference of scaled coefficient s*c and integral i */
4935 * if the row's activity is proven to be integral, the sides are automatically rounded to the next integer
4946 SCIP_Bool integralcontvars, /**< should the coefficients of the continuous variables also be made integral,
4948 SCIP_Real minrounddelta, /**< minimal relative difference of scaled coefficient s*c and integral i,
4950 SCIP_Real maxrounddelta /**< maximal relative difference of scaled coefficient s*c and integral i
4974 SCIPsetDebugMsg(set, "scale row <%s> with %g (tolerance=[%g,%g])\n", row->name, scaleval, minrounddelta, maxrounddelta);
4982 /* scale the row coefficients, thereby recalculating whether the row's activity is always integral;
4983 * if the row coefficients are rounded to the nearest integer value, calculate the maximal activity difference,
4995 /* get local or global bounds for column, depending on the local or global feasibility of the row */
5059 /* scale the row sides, and move the constant to the sides; relax the sides with accumulated delta in order
5096 for( c = 0; c < row->len && SCIPcolIsIntegral(row->cols[c]) && SCIPsetIsIntegral(set, row->vals[c]); ++c )
5120 void* origin, /**< pointer to constraint handler or separator who created the row (NULL if unkown) */
5122 SCIP_Bool modifiable, /**< is row modifiable during node processing (subject to column generation)? */
5132 * in case, for example, lhs > rhs but they are equal with tolerances, one could pass lhs=rhs=lhs+rhs/2 to
5325 SCIPmessageFPrintInfo(messagehdlr, file, "%+.15g<%s> ", row->vals[i], SCIPvarGetName(row->cols[i]->var));
5345 SCIPdebugMessage("capture row <%s> with nuses=%d and nlocks=%u\n", row->name, row->nuses, row->nlocks);
5363 SCIPsetDebugMsg(set, "release row <%s> with nuses=%d and nlocks=%u\n", (*row)->name, (*row)->nuses, (*row)->nlocks);
5375/** locks an unmodifiable row, which forbids further changes; has no effect on modifiable rows */
5385 SCIPdebugMessage("lock row <%s> with nuses=%d and nlocks=%u\n", row->name, row->nuses, row->nlocks);
5390/** unlocks a lock of an unmodifiable row; a row with no sealed lock may be modified; has no effect on modifiable rows */
5400 SCIPdebugMessage("unlock row <%s> with nuses=%d and nlocks=%u\n", row->name, row->nuses, row->nlocks);
5450 SCIPerrorMessage("coefficient for column <%s> doesn't exist in row <%s>\n", SCIPvarGetName(col->var), row->name);
5552 /* coefficient doesn't exist, or sorting is delayed: add coefficient to the end of the row's arrays */
5657 SCIP_CALL( SCIProwChgConstant(row, blkmem, set, stat, eventqueue, lp, row->constant + addval) );
5688 SCIP_CALL( rowEventSideChanged(row, blkmem, set, eventqueue, SCIP_SIDETYPE_LEFT, oldlhs, lhs) );
5720 SCIP_CALL( rowEventSideChanged(row, blkmem, set, eventqueue, SCIP_SIDETYPE_RIGHT, oldrhs, rhs) );
5744/** tries to find a value, such that all row coefficients, if scaled with this value become integral */
5748 SCIP_Real mindelta, /**< minimal relative allowed difference of scaled coefficient s*c and integral i */
5749 SCIP_Real maxdelta, /**< maximal relative allowed difference of scaled coefficient s*c and integral i */
5752 SCIP_Bool usecontvars, /**< should the coefficients of the continuous variables also be made integral? */
5753 SCIP_Real* intscalar, /**< pointer to store scalar that would make the coefficients integral, or NULL */
5775 /**@todo call misc.c:SCIPcalcIntegralScalar() instead - if usecontvars == FALSE, filter the integer variables first */
5785 SCIPsetDebugMsg(set, "trying to find rational representation for row <%s> (contvars: %u)\n", SCIProwGetName(row), usecontvars);
5786 SCIPdebug( val = 0; ); /* avoid warning "val might be used uninitialized; see SCIPdebugMessage lastval=%g below */
5826 /* try, if row coefficients can be made integral by multiplying them with the reciprocal of the smallest coefficient
5855 SCIPsetDebugMsg(set, " -> val=%g, scaleval=%g, val*scaleval=%g, scalable=%u\n", val, scaleval, val*scaleval, scalable);
5866 SCIPsetDebugMsg(set, " -> integrality can be achieved by scaling with %g (minval=%g)\n", scaleval, minval);
5884 && (absval * twomultval < 0.5 || !isIntegralScalar(val, twomultval, mindelta, maxdelta, NULL)) )
5908 SCIPsetDebugMsg(set, " -> integrality can be achieved by scaling with %g (power of 2)\n", twomultval);
5913 /* convert each coefficient into a rational number, calculate the greatest common divisor of the numerators
5933 SCIPsetDebugMsg(set, " -> first rational: val: %g == %" SCIP_LONGINT_FORMAT "/%" SCIP_LONGINT_FORMAT ", gcd=%" SCIP_LONGINT_FORMAT ", scm=%" SCIP_LONGINT_FORMAT ", rational=%u\n",
5953 SCIPsetDebugMsg(set, " -> next rational : val: %g == %" SCIP_LONGINT_FORMAT "/%" SCIP_LONGINT_FORMAT ", gcd=%" SCIP_LONGINT_FORMAT ", scm=%" SCIP_LONGINT_FORMAT ", rational=%u\n",
5961 /* make row coefficients integral by multiplying them with the smallest common multiple of the denominators */
5966 SCIPsetDebugMsg(set, " -> integrality can be achieved by scaling with %g (rational:%" SCIP_LONGINT_FORMAT "/%" SCIP_LONGINT_FORMAT ")\n",
5972 SCIPsetDebugMsg(set, " -> rationalizing failed: gcd=%" SCIP_LONGINT_FORMAT ", scm=%" SCIP_LONGINT_FORMAT ", lastval=%g\n", gcd, scm, val); /*lint !e771*/
5986 SCIP_Real mindelta, /**< minimal relative allowed difference of scaled coefficient s*c and integral i */
5987 SCIP_Real maxdelta, /**< maximal relative allowed difference of scaled coefficient s*c and integral i */
5990 SCIP_Bool usecontvars, /**< should the coefficients of the continuous variables also be made integral? */
5999 SCIP_CALL( SCIProwCalcIntegralScalar(row, set, mindelta, maxdelta, maxdnom, maxscale, usecontvars,
6005 SCIP_CALL( rowScale(row, blkmem, set, eventqueue, stat, lp, intscalar, usecontvars, mindelta, maxdelta) );
6011/** sorts row entries such that LP columns precede non-LP columns and inside both parts lower column indices precede
6041/** sorts row, and merges equal column entries (resulting from lazy sorting and adding) into a single entry; removes
6101 /* in case the coefficient is integral w.r.t. numerics we explicitly round the coefficient to an integral value */
6104 row->integral = row->integral && SCIPcolIsIntegral(cols[t]) && SCIPsetIsIntegral(set, vals[t]);
6114 row->integral = row->integral && SCIPcolIsIntegral(cols[t]) && SCIPsetIsIntegral(set, vals[t]);
6123 /* if equal entries were merged, we have to recalculate the norms, since the squared Euclidean norm is wrong */
6251/** returns the feasibility of a row in the current LP solution: negative value means infeasibility */
6268/** returns the feasibility of a row in the relaxed solution solution: negative value means infeasibility
6330/** returns the feasibility of a row in the current NLP solution: negative value means infeasibility
6416 assert(!row->integral || EPSISINT(row->pseudoactivity - row->constant, SCIP_DEFAULT_SUMEPSILON));
6447/** returns the pseudo feasibility of a row in the current pseudo solution: negative value means infeasibility */
6581 /* even if the row is integral, the bounds on the variables used for computing minimum and maximum activity might
6582 * be integral only within feasibility tolerance; this can happen, e.g., if a continuous variable is promoted to
6583 * an (implicit) integer variable and the bounds cannot be adjusted because they are minimally tighter than the
6584 * rounded bound value; hence, the activity may violate integrality; we allow 1000 times the default feasibility
6587 assert(!row->integral || mininfinite || REALABS(row->minactivity - row->constant) > 1.0/SCIPsetSumepsilon(set)
6589 assert(!row->integral || maxinfinite || REALABS(row->maxactivity - row->constant) > 1.0/SCIPsetSumepsilon(set)
6800 solcutoffdist = -SCIProwGetLPFeasibility(row, set, stat, lp) / ABS(solcutoffdist); /*lint !e795*/
6846/** returns whether the row's efficacy with respect to the current LP solution is greater than the minimal cut efficacy */
6903/** returns whether the row's efficacy with respect to the given primal solution is greater than the minimal cut
7022 * The columns in a row are divided into two parts: LP columns, which are currently in the LP and non-LP columns;
7023 * we sort the rows, but that only ensures that within these two parts, columns are sorted w.r.t. their index.
7024 * Normally, this should be suficient, because a column contained in both rows should either be one of the LP columns
7026 * However, directly after a row was created, before a row is added to the LP, the row is not linked to all its
7027 * columns and all columns are treated as non-LP columns. Moreover, for example when doing column generation,
7028 * columns can be added later and remain unlinked while all previously added columns might already be linked.
7029 * Therefore, we have to be very careful about whether we can rely on the partitioning of the variables.
7044 * -> we need to compare three partitions: the LP part of the completely linked row and both partitions of the
7048 * -> we need to compare three partitions: the complete unlinked row and both partitions of the other row
7067 /* check that we can rely on the partition into LP columns and non-LP columns if the rows are completely linked */
7111 /* set the iterators to the last column we want to regard in the row: nunlinked is either 0 or row->len,
7136 /* the "harder" cases 3) - 5): start with four partitions and reduce their number iteratively */
7158 while( ilp1 < row1->nlpcols && inlp1 < row1->len && ilp2 < row2->nlpcols && inlp2 < row2->len )
7167 assert((row1->cols[inlp1] == row2->cols[inlp2]) == (row1colsidx[inlp1] == row2colsidx[inlp2]));
7234 /* One partition was completely handled, we just have to handle the three remaining partitions:
7236 * If necessary, we swap the partitions to ensure that row1 is the row with only one remaining partition.
7255 /* determine section of row 1 that we want to look at (current iterator = begin, end, LP-columns?)
7273 /* handle the case of three partitions (case 4) until one partition is finished, this reduces our problem to case 1), 2), or 5);
7315 /* if the second section of row 1 was finished, we can stop; otherwise, we have to consider the remaining parts of
7320 /* determine section of row 2 that we want to look at (current iterator = begin, end, LP-columns?) */
7335 /* handle the case of two partitions (standard case 5, or case 1 or 2 due to partition reduction) */
7379 * The columns in a row are divided into two parts: LP columns, which are currently in the LP and non-LP columns;
7380 * we sort the rows, but that only ensures that within these two parts, columns are sorted w.r.t. their index.
7381 * Normally, this should be suficient, because a column contained in both rows should either be one of the LP columns
7383 * However, directly after a row was created, before a row is added to the LP, the row is not linked to all its
7384 * columns and all columns are treated as non-LP columns. Moreover, for example when doing column generation,
7385 * columns can be added later and remain unlinked while all previously added columns might already be linked.
7386 * Therefore, we have to be very careful about whether we can rely on the partitioning of the variables.
7401 * -> we need to compare three partitions: the LP part of the completely linked row and both partitions of the
7405 * -> we need to compare three partitions: the complete unlinked row and both partitions of the other row
7424 /* check that we can rely on the partition into LP columns and non-LP columns if the rows are completely linked */
7468 /* set the iterators to the last column we want to regard in the row: nunlinked is either 0 or row->len,
7493 /* the "harder" cases 3) - 5): start with four partitions and reduce their number iteratively */
7515 while( ilp1 < row1->nlpcols && inlp1 < row1->len && ilp2 < row2->nlpcols && inlp2 < row2->len )
7524 assert((row1->cols[inlp1] == row2->cols[inlp2]) == (row1colsidx[inlp1] == row2colsidx[inlp2]));
7591 /* One partition was completely handled, we just have to handle the three remaining partitions:
7593 * If necessary, we swap the partitions to ensure that row1 is the row with only one remaining partition.
7612 /* determine section of row 1 that we want to look at (current iterator = begin, end, LP-columns?)
7630 /* handle the case of three partitions (case 4) until one partition is finished, this reduces our problem to case 1), 2), or 5);
7672 /* if the second section of row 1 was finished, we can stop; otherwise, we have to consider the remaining parts of
7677 /* determine section of row 2 that we want to look at (current iterator = begin, end, LP-columns?) */
7692 /* handle the case of two partitions (standard case 5, or case 1 or 2 due to partition reduction) */
7718/** returns the degree of parallelism between the hyperplanes defined by the two row vectors v, w:
7770 parallelism = scalarprod / (sqrt((SCIP_Real) SCIProwGetNNonz(row1)) * sqrt((SCIP_Real) SCIProwGetNNonz(row2)));
7782/** returns the degree of orthogonality between the hyperplanes defined by the two row vectors v, w:
7795/** gets parallelism of row with objective function: if the returned value is 1, the row is parallel to the objective
7837 SCIP_EVENTDATA* eventdata, /**< event data to pass to the event handler for the event processing */
7846 SCIPsetDebugMsg(set, "catch event of type 0x%" SCIP_EVENTTYPE_FORMAT " of row <%s> with handler %p and data %p\n",
7849 SCIP_CALL( SCIPeventfilterAdd(row->eventfilter, blkmem, set, eventtype, eventhdlr, eventdata, filterpos) );
7861 SCIP_EVENTDATA* eventdata, /**< event data to pass to the event handler for the event processing */
7868 SCIPsetDebugMsg(set, "drop event of row <%s> with handler %p and data %p\n", row->name, (void*)eventhdlr, (void*)eventdata);
7870 SCIP_CALL( SCIPeventfilterDel(row->eventfilter, blkmem, set, eventtype, eventhdlr, eventdata, filterpos) );
7875/** marks a row to be not removable from the LP in the current node because it became obsolete */
7885 /* lpRemoveObsoleteRows() does not remove a row if the node number stored in obsoletenode equals the current node number */
7941 SCIPdebugMessage("flushing col deletions: shrink LP from %d to %d columns\n", lp->nlpicols, lp->lpifirstchgcol);
7987 if( SCIPsetIsInfinity(set, -col->lb) || (SCIPsetIsLE(set, col->lb, col->lazylb) && !SCIPlpDiving(lp)) )
7995 if( SCIPsetIsInfinity(set, col->ub) || (SCIPsetIsGE(set, col->ub, col->lazyub) && !SCIPlpDiving(lp)) )
8132 SCIPsetDebugMsg(set, "flushing col additions: enlarge LP from %d to %d columns\n", lp->nlpicols, lp->ncols);
8202 SCIPsetDebugMsg(set, "flushing row deletions: shrink LP from %d to %d rows\n", lp->nlpirows, lp->lpifirstchgrow);
8330 SCIPsetDebugMsgPrint(set, " %+gx%d(<%s>)", row->vals[i], lpipos+1, SCIPvarGetName(row->cols[i]->var));
8347 SCIPsetDebugMsg(set, "flushing row additions: enlarge LP from %d to %d rows\n", lp->nlpirows, lp->nrows);
8433 || (!SCIPsetIsInfinity(set, -lpilb) && !SCIPsetIsInfinity(set, -col->flushedlb) && SCIPsetIsFeasEQ(set, lpilb, col->flushedlb)));
8435 || (!SCIPsetIsInfinity(set, lpiub) && !SCIPsetIsInfinity(set, col->flushedub) && SCIPsetIsFeasEQ(set, lpiub, col->flushedub)));
8483 SCIPsetDebugMsg(set, "flushing objective changes: change %d objective values of %d changed columns\n", nobjchg, lp->nchgcols);
8497 SCIPsetDebugMsg(set, "flushing bound changes: change %d bounds of %d changed columns\n", nbdchg, lp->nchgcols);
8598 SCIPsetDebugMsg(set, "flushing side changes: change %d sides of %d rows\n", nchg, lp->nchgrows);
8680 SCIPsetDebugMsg(set, "flushing LP changes: old (%d cols, %d rows), nchgcols=%d, nchgrows=%d, firstchgcol=%d, firstchgrow=%d, new (%d cols, %d rows), flushed=%u\n",
8681 lp->nlpicols, lp->nlpirows, lp->nchgcols, lp->nchgrows, lp->lpifirstchgcol, lp->lpifirstchgrow, lp->ncols, lp->nrows, lp->flushed);
8702 /* if the cutoff bound was changed in between and it is not disabled (e.g. for column generation),
8705 if( !lpCutoffDisabled(set, prob, lp) && lp->cutoffbound != lp->lpiobjlim && lp->ncols > 0 ) /*lint !e777*/
8802 assert(col->flushedlb == (SCIPsetIsInfinity(set, -col->lb) ? -SCIPlpiInfinity(lp->lpi) : col->lb)); /*lint !e777*/
8803 assert(col->flushedub == (SCIPsetIsInfinity(set, col->ub) ? SCIPlpiInfinity(lp->lpi) : col->ub)); /*lint !e777*/
8834 assert(row->flushedlhs == (SCIPsetIsInfinity(set, -row->lhs) ? -SCIPlpiInfinity(lp->lpi) : row->lhs - row->constant)); /*lint !e777*/
8835 assert(row->flushedrhs == (SCIPsetIsInfinity(set, row->rhs) ? SCIPlpiInfinity(lp->lpi) : row->rhs - row->constant)); /*lint !e777*/
9148 (*lp)->validsollp = stat->lpcount; /* the initial (empty) SCIP_LP is solved with primal and dual solution of zero */
9220 "LP Solver <%s>: objective limit cannot be set -- can lead to unnecessary simplex iterations\n",
9228 "LP Solver <%s>: primal feasibility tolerance cannot be set -- tolerance of SCIP and LP solver may differ\n",
9236 "LP Solver <%s>: dual feasibility tolerance cannot be set -- tolerance of SCIP and LP solver may differ\n",
9244 "LP Solver <%s>: barrier convergence tolerance cannot be set -- tolerance of SCIP and LP solver may differ\n",
9283 "LP Solver <%s>: iteration limit cannot be set -- can lead to unnecessary simplex iterations\n",
9305 "LP Solver <%s>: row representation of the basis not available -- SCIP parameter lp/rowrepswitch has no effect\n",
9308 SCIP_CALL( lpSetIntpar(*lp, SCIP_LPPAR_POLISHING, ((*lp)->lpisolutionpolishing ? 1 : 0), &success) );
9313 "LP Solver <%s>: solution polishing not available -- SCIP parameter lp/solutionpolishing has no effect\n",
9321 "LP Solver <%s>: refactorization interval not available -- SCIP parameter lp/refactorinterval has no effect\n",
9328 "LP Solver <%s>: condition number limit for the basis not available -- SCIP parameter lp/conditionlimit has no effect\n",
9335 "LP Solver <%s>: markowitz threshhold not available -- SCIP parameter lp/minmarkowitz has no effect\n",
9357 /* Check that infinity value of LP-solver is at least as large as the one used in SCIP. This is necessary, because we
9361 SCIPerrorMessage("The infinity value of the LP solver has to be at least as large as the one of SCIP.\n");
9411/** resets the LP to the empty LP by removing all columns and rows from LP, releasing all rows, and flushing the
9432 lp->validsollp = stat->lpcount; /* the initial (empty) SCIP_LP is solved with primal and dual solution of zero */
9466 SCIPsetDebugMsg(set, "adding column <%s> to LP (%d rows, %d cols)\n", SCIPvarGetName(col->var), lp->nrows, lp->ncols);
9526 SCIPsetDebugMsg(set, "adding row <%s> to LP (%d rows, %d cols)\n", row->name, lp->nrows, lp->ncols);
9566 SCIP_CALL( SCIPeventqueueAdd(eventqueue, blkmem, set, NULL, NULL, NULL, eventfilter, &event) );
9574/** method checks if all columns in the lazycols array have at least one lazy bound and also have a counter part in the
9575 * cols array; furthermore, it is checked if columns in the cols array which have a lazy bound have a counter part in
9595 assert(!SCIPsetIsInfinity(set, lp->lazycols[i]->lazyub) || !SCIPsetIsInfinity(set, -lp->lazycols[i]->lazylb));
9602 assert(!SCIPsetIsInfinity(set, lp->cols[c]->lazyub) || !SCIPsetIsInfinity(set, -lp->cols[c]->lazylb));
9609 /* check if each column in the column array which has at least one lazy bound has a counter part in the lazy column *
9624 assert(contained == (!SCIPsetIsInfinity(set, lp->cols[c]->lazyub) || !SCIPsetIsInfinity(set, -lp->cols[c]->lazylb)));
9751 SCIP_CALL( SCIPeventqueueAdd(eventqueue, blkmem, set, NULL, NULL, NULL, eventfilter, &event) );
9814/** gets all indices of basic columns and rows: index i >= 0 corresponds to column i, index i < 0 to row -i-1 */
9831/** gets current basis status for columns and rows; arrays must be large enough to store the basis status */
9896/** gets a row from the product of inverse basis matrix B^-1 and coefficient matrix A (i.e. from B^-1 * A) */
9919/** gets a column from the product of inverse basis matrix B^-1 and coefficient matrix A (i.e. from B^-1 * A),
9943/** calculates a weighted sum of all LP rows; for negative weights, the left and right hand side of the corresponding
9951 SCIP_REALARRAY* sumcoef, /**< array to store sum coefficients indexed by variables' probindex */
9973 SCIP_CALL( SCIPrealarrayExtend(sumcoef, set->mem_arraygrowinit, set->mem_arraygrowfac, 0, prob->nvars-1) );
9998 SCIP_CALL( SCIPrealarrayIncVal(sumcoef, set->mem_arraygrowinit, set->mem_arraygrowfac, idx, weights[r] * row->vals[i]) );
10064 SCIP_Bool wasprimchecked, /**< true if the LP solution has passed the primal feasibility check */
10066 SCIP_Bool wasdualchecked /**< true if the LP solution has passed the dual feasibility check */
10087 /* @todo: setting feasibility to TRUE might be wrong because in probing mode, the state is even saved when the LP was
10209 SCIPsetDebugMsg(set, "setting LP upper objective limit from %g to %g\n", lp->cutoffbound, cutoffbound);
10211 /* if the objective function was changed in diving, the cutoff bound has no meaning (it will be set correctly
10220 /* if the cutoff bound is increased, and the LP was proved to exceed the old cutoff, it is no longer solved */
10228 /* if the cutoff bound is decreased below the current optimal value, the LP now exceeds the objective limit;
10229 * if the objective limit in the LP solver was disabled, the solution status of the LP is not changed
10264 SCIPsetDebugMsg(set, "setting LP primal feasibility tolerance from %g to %g\n", lp->feastol, newfeastol);
10278 * Sets primal feasibility tolerance to min of numerics/lpfeastolfactor * numerics/feastol and relaxfeastol.
10290 SCIPlpSetFeastol(lp, set, MIN(SCIPsetRelaxfeastol(set), SCIPsetLPFeastolFactor(set) * SCIPsetFeastol(set))); /*lint !e666*/
10318/** calls LPI to perform primal simplex, measures time and counts iterations, gets basis feasibility status */
10325 SCIP_Bool keepsol, /**< should the old LP solution be kept if no iterations were performed? */
10340 SCIPsetDebugMsg(set, "solving LP %" SCIP_LONGINT_FORMAT " (%d cols, %d rows) with primal simplex (diving=%d, nprimallps=%" SCIP_LONGINT_FORMAT ", ndivinglps=%" SCIP_LONGINT_FORMAT ")\n",
10341 stat->lpcount+1, lp->ncols, lp->nrows, lp->diving || lp->probing, stat->nprimallps, stat->ndivinglps);
10349 (void) SCIPsnprintf(fname, SCIP_MAXSTRLEN, "lp%" SCIP_LONGINT_FORMAT "_%" SCIP_LONGINT_FORMAT ".lp", stat->nnodes, stat->lpcount);
10351 SCIPsetDebugMsg(set, "wrote LP to file <%s> (primal simplex, objlim=%.15g, feastol=%.15g/%.15g, fromscratch=%d, fastmip=%d, scaling=%d, presolving=%d)\n",
10384 SCIPsetDebugMsg(set, "(node %" SCIP_LONGINT_FORMAT ") primal simplex solving error in LP %" SCIP_LONGINT_FORMAT "\n", stat->nnodes, stat->nlps);
10470 SCIPsetDebugMsg(set, "solved LP %" SCIP_LONGINT_FORMAT " with primal simplex (diving=%d, nprimallps=%" SCIP_LONGINT_FORMAT ", ndivinglps=%" SCIP_LONGINT_FORMAT ")\n",
10483 SCIP_Bool keepsol, /**< should the old LP solution be kept if no iterations were performed? */
10498 SCIPsetDebugMsg(set, "solving LP %" SCIP_LONGINT_FORMAT " (%d cols, %d rows) with dual simplex (diving=%d, nduallps=%" SCIP_LONGINT_FORMAT ", ndivinglps=%" SCIP_LONGINT_FORMAT ")\n",
10499 stat->lpcount+1, lp->ncols, lp->nrows, lp->diving || lp->probing, stat->nduallps, stat->ndivinglps);
10507 (void) SCIPsnprintf(fname, SCIP_MAXSTRLEN, "lp%" SCIP_LONGINT_FORMAT "_%" SCIP_LONGINT_FORMAT ".lp", stat->nnodes, stat->lpcount);
10509 SCIPsetDebugMsg(set, "wrote LP to file <%s> (dual simplex, objlim=%.15g, feastol=%.15g/%.15g, fromscratch=%d, fastmip=%d, scaling=%d, presolving=%d)\n",
10542 SCIPsetDebugMsg(set, "(node %" SCIP_LONGINT_FORMAT ") dual simplex solving error in LP %" SCIP_LONGINT_FORMAT "\n", stat->nnodes, stat->nlps);
10628 SCIPsetDebugMsg(set, "solved LP %" SCIP_LONGINT_FORMAT " with dual simplex (diving=%d, nduallps=%" SCIP_LONGINT_FORMAT ", ndivinglps=%" SCIP_LONGINT_FORMAT ")\n",
10634/** calls LPI to perform lexicographic dual simplex to find a lexicographically minimal optimal solution, measures time and counts iterations
10643 * We do, however, not aim for the exact lexicographically minimal optimal solutions, but perform a
10646 * More precisely, we first solve the problem with the dual simplex algorithm. Then we fix those
10648 * variables) that have nonzero reduced cost. This fixes the objective function value, because only
10651 * Then the not yet fixed variables are considered in turn. If they are at their lower bounds and
10652 * nonbasic, they are fixed to this bound, since their value cannot be decreased further. Once a
10653 * candidate is found, we set the objective to minimize this variable. We run the primal simplex
10655 * variables out of the basis have been fixed to their lower bound, the basis is also not primal
10656 * feasible anymore). After the optimization, we again fix nonbasic variables that have nonzero
10663 * @todo Can we skip the consideration of basic variables that are at their lower bound? How can we
10664 * guarantee that these variables will not be changed in later stages? We can fix these variables
10674 SCIP_Bool keepsol, /**< should the old LP solution be kept if no iterations were performed? */
10691 SCIPsetDebugMsg(set, "solving LP %" SCIP_LONGINT_FORMAT " (%d cols, %d rows) with lex dual simplex (diving=%d, nduallps=%" SCIP_LONGINT_FORMAT ", ndivinglps=%" SCIP_LONGINT_FORMAT ")\n",
10692 stat->lpcount+1, lp->ncols, lp->nrows, lp->diving || lp->probing, stat->nduallps, stat->ndivinglps);
10717 SCIPsetDebugMsg(set, "(node %" SCIP_LONGINT_FORMAT ") dual simplex solving error in LP %" SCIP_LONGINT_FORMAT "\n", stat->nnodes, stat->nlps);
10961 /* check columns: find first candidate (either basic or nonbasic and zero reduced cost) and fix variables */
11088 /* solve with primal simplex, because we are primal feasible, but not necessarily dual feasible */
11093 SCIPsetDebugMsg(set, "(node %" SCIP_LONGINT_FORMAT ") in lex-dual: primal simplex solving error in LP %" SCIP_LONGINT_FORMAT "\n", stat->nnodes, stat->nlps);
11171 while( pos >= 0 && nDualDeg > 0 && (set->lp_lexdualmaxrounds == -1 || rounds < set->lp_lexdualmaxrounds) );
11183 SCIPsetDebugMsg(set, "(node %" SCIP_LONGINT_FORMAT ") dual simplex solving error in LP %" SCIP_LONGINT_FORMAT "\n", stat->nnodes, stat->nlps);
11253 SCIPsetDebugMsg(set, "solved LP %" SCIP_LONGINT_FORMAT " with lex dual simplex (diving=%d, nduallps=%" SCIP_LONGINT_FORMAT ", ndivinglps=%" SCIP_LONGINT_FORMAT ")\n",
11276/** calls LPI to perform barrier, measures time and counts iterations, gets basis feasibility status */
11283 SCIP_Bool keepsol, /**< should the old LP solution be kept if no iterations were performed? */
11297 SCIPsetDebugMsg(set, "solving LP %" SCIP_LONGINT_FORMAT " (%d cols, %d rows) with barrier%s (diving=%d, nbarrierlps=%" SCIP_LONGINT_FORMAT ", ndivinglps=%" SCIP_LONGINT_FORMAT ")\n",
11298 stat->lpcount+1, lp->ncols, lp->nrows, crossover ? "/crossover" : "", lp->diving || lp->probing,
11307 (void) SCIPsnprintf(fname, SCIP_MAXSTRLEN, "lp%" SCIP_LONGINT_FORMAT "_%" SCIP_LONGINT_FORMAT ".lp", stat->nnodes, stat->lpcount);
11309 SCIPsetDebugMsg(set, "wrote LP to file <%s> (barrier, objlim=%.15g, feastol=%.15g/%.15g, convtol=%.15g, fromscratch=%d, fastmip=%d, scaling=%d, presolving=%d)\n",
11336 SCIPsetDebugMsg(set, "(node %" SCIP_LONGINT_FORMAT ") barrier solving error in LP %" SCIP_LONGINT_FORMAT "\n", stat->nnodes, stat->nlps);
11407 SCIPsetDebugMsg(set, "solved LP %" SCIP_LONGINT_FORMAT " with barrier%s (diving=%d, nduallps=%" SCIP_LONGINT_FORMAT ", nbarrierlps=%" SCIP_LONGINT_FORMAT ")\n",
11408 stat->lpcount, crossover ? "/crossover" : "", lp->diving || lp->probing, stat->nbarrierlps, stat->ndivinglps);
11421 SCIP_Bool keepsol, /**< should the old LP solution be kept if no iterations were performed? */
11450 SCIPsetDebugMsg(set, "calling LP algorithm <%s> with a time limit of %g seconds\n", lpalgoName(lpalgo), lptimelimit);
11461 if( set->lp_lexdualalgo && (!set->lp_lexdualrootonly || stat->maxdepth == 0) && (!set->lp_lexdualstalling || lp->installing) )
11489 SCIPsetDebugMsg(set, "LP feasibility: primalfeasible=%u, dualfeasible=%u\n", lp->primalfeasible, lp->dualfeasible);
11495/** maximal number of verblevel-high messages about numerical trouble in LP that will be printed
11496 * when this number is reached and display/verblevel is not full, then further messages are suppressed in this run
11526 /* if already max number of messages about numerical trouble in LP on verblevel at most high, then skip message */
11550 if( set->disp_verblevel < SCIP_VERBLEVEL_FULL && verblevel <= SCIP_VERBLEVEL_HIGH && stat->nnumtroublelpmsgs > MAXNUMTROUBLELPMSGS )
11552 SCIPmessagePrintInfo(messagehdlr, " -- further messages will be suppressed (use display/verblevel=5 to see all)");
11576 lpNumericalTroubleMessage(messagehdlr, set, stat, SCIP_VERBLEVEL_FULL, "ignoring instability of %s", lpalgoName(lpalgo));
11596 int itlim, /**< maximal number of LP iterations to perform in first LP calls (before solving from scratch), or -1 for no limit */
11597 int harditlim, /**< maximal number of LP iterations to perform (hard limit for all LP calls), or -1 for no limit */
11602 SCIP_Bool fromscratch, /**< should the LP be solved from scratch without using current basis? */
11604 SCIP_Bool keepsol, /**< should the old LP solution be kept if no iterations were performed? */
11625 /**@todo implement solving the LP when loose variables with infinite best bound are present; for this, we need to
11626 * solve with deactivated objective limit in order to determine whether we are (a) infeasible or (b) feasible
11627 * and hence unbounded; to handle case (b) we need to store an array of loose variables with best bound in
11632 SCIPerrorMessage("cannot solve LP when loose variable with infinite best bound is present\n");
11643 if( lp->lpihaspolishing && (set->lp_solutionpolishing == 2 || (set->lp_solutionpolishing == 1 && stat->nnodes == 1 && !lp->probing)
11644 || (set->lp_solutionpolishing == 3 && ((lp->probing && !lp->strongbranchprobing) || lp->diving))) )
11662 SCIP_CALL( lpSetObjlim(lp, set, prob, lp->cutoffbound - getFiniteLooseObjval(lp, set, prob), &success) );
11665 SCIP_CALL( lpSetFeastol(lp, tightprimfeastol ? FEASTOLTIGHTFAC * lp->feastol : lp->feastol, &success) );
11666 SCIP_CALL( lpSetDualfeastol(lp, tightdualfeastol ? FEASTOLTIGHTFAC * SCIPsetDualfeastol(set) : SCIPsetDualfeastol(set),
11668 SCIP_CALL( lpSetBarrierconvtol(lp, (tightprimfeastol || tightdualfeastol) ? FEASTOLTIGHTFAC * SCIPsetBarrierconvtol(set)
11681 SCIP_CALL( lpSetRandomseed(lp, (int) (SCIPsetInitializeRandomSeed(set, (unsigned) set->random_randomseed) % INT_MAX), &success) );
11687 /* after the first solve, do not use starting basis, since otherwise the solver will probably think the basis is
11691 /* check for stability; iteration limit exceeded is also treated like instability if the iteration limit is soft */
11692 if( *timelimit || (!(*lperror) && SCIPlpiIsStable(lp->lpi) && (itlimishard || !SCIPlpiIsIterlimExc(lp->lpi))) )
11703 /* In the following, whenever the LP iteration limit is exceeded in an LP solving call, we leave out the
11704 * remaining resolving calls with changed settings and go directly to solving the LP from scratch.
11707 /* if FASTMIP is turned on, solve again without FASTMIP (starts from the solution of the last LP solving call);
11715 lpNumericalTroubleMessage(messagehdlr, set, stat, SCIP_VERBLEVEL_FULL, "solve again with %s without FASTMIP", lpalgoName(lpalgo));
11719 if( *timelimit || (!(*lperror) && SCIPlpiIsStable(lp->lpi) && (itlimishard || !SCIPlpiIsIterlimExc(lp->lpi))) )
11732 /* if the iteration limit was exceeded in the last LP solving call, we leave out the remaining resolving calls with changed settings
11737 /* solve again with opposite scaling setting (starts from the solution of the last LP solving call) */
11741 lpNumericalTroubleMessage(messagehdlr, set, stat, SCIP_VERBLEVEL_FULL, "solve again with %s %s scaling",
11746 if( *timelimit || (!(*lperror) && SCIPlpiIsStable(lp->lpi) && (itlimishard || !SCIPlpiIsIterlimExc(lp->lpi))) )
11763 /* if the iteration limit was exceeded in the last LP solving call, we leave out the remaining resolving calls with changed settings
11767 /* solve again with opposite presolving setting (starts from the solution of the last LP solving call) */
11771 lpNumericalTroubleMessage(messagehdlr, set, stat, SCIP_VERBLEVEL_FULL, "solve again with %s %s presolving",
11776 if( *timelimit || (!(*lperror) && SCIPlpiIsStable(lp->lpi) && (itlimishard || !SCIPlpiIsIterlimExc(lp->lpi))) )
11793 /* solve again with a tighter feasibility tolerance (starts from the solution of the last LP solving call);
11796 if( ((simplex && (!tightprimfeastol || !tightdualfeastol)) || (!tightprimfeastol && !tightdualfeastol)) &&
11814 SCIP_CALL( lpSetBarrierconvtol(lp, FEASTOLTIGHTFAC * SCIPsetBarrierconvtol(set), &success3) );
11820 lpNumericalTroubleMessage(messagehdlr, set, stat, SCIP_VERBLEVEL_FULL, "solve again with %s with tighter primal and dual feasibility tolerance",
11825 if( *timelimit || (!(*lperror) && SCIPlpiIsStable(lp->lpi) && (itlimishard || !SCIPlpiIsIterlimExc(lp->lpi))) )
11852 /* all LPs solved after this point are solved from scratch, so set the LP iteration limit to the hard limit;
11862 lpNumericalTroubleMessage(messagehdlr, set, stat, SCIP_VERBLEVEL_FULL, "solve again from scratch with %s", lpalgoName(lpalgo));
11882 lpalgo = (lpalgo == SCIP_LPALGO_PRIMALSIMPLEX ? SCIP_LPALGO_DUALSIMPLEX : SCIP_LPALGO_PRIMALSIMPLEX);
11883 lpNumericalTroubleMessage(messagehdlr, set, stat, SCIP_VERBLEVEL_FULL, "solve again from scratch with %s", lpalgoName(lpalgo));
11902 lpNumericalTroubleMessage(messagehdlr, set, stat, SCIP_VERBLEVEL_FULL, "solve again from scratch with %s %s scaling",
11927 lpNumericalTroubleMessage(messagehdlr, set, stat, SCIP_VERBLEVEL_FULL, "solve again from scratch with %s %s presolving",
11966 lpNumericalTroubleMessage(messagehdlr, set, stat, SCIP_VERBLEVEL_FULL, "solve again from scratch with %s with tighter feasibility tolerance",
12014 if( SCIPsetIsInfinity(set, lp->lpobjval) && lp->lpobjval != SCIPsetInfinity(set) ) /*lint !e777*/
12023 else if( SCIPsetIsInfinity(set, -lp->lpobjval) && lp->lpobjval != -SCIPsetInfinity(set) ) /*lint !e777*/
12043 int resolveitlim, /**< maximal number of LP iterations to perform in resolving calls, or -1 for no limit */
12044 int harditlim, /**< maximal number of LP iterations to perform (hard limit for all LP calls), or -1 for no limit */
12051 SCIP_Bool fromscratch, /**< should the LP be solved from scratch without using current basis? */
12053 SCIP_Bool keepsol, /**< should the old LP solution be kept if no iterations were performed? */
12079 SCIP_CALL( lpSolveStable(lp, set, messagehdlr, stat, prob, lpalgo, itlim, harditlim, resolve, fastmip, tightprimfeastol, tightdualfeastol, fromscratch,
12088 SCIPsetDebugMsg(set, "unresolved error while solving LP with %s\n", lpalgoName(lp->lastlpalgo));
12105 assert(!(SCIPlpiIsOptimal(lp->lpi) && SCIPlpiIsObjlimExc(lp->lpi) && SCIPlpiIsPrimalInfeasible(lp->lpi) &&
12106 SCIPlpiExistsPrimalRay(lp->lpi) && SCIPlpiIsIterlimExc(lp->lpi) && SCIPlpiIsTimelimExc(lp->lpi)));
12119 /* the solver may return the optimal value, even if this is greater or equal than the upper bound */
12120 SCIPsetDebugMsg(set, "optimal solution %.15g exceeds objective limit %.15g\n", lp->lpobjval, lp->lpiobjlim);
12124 /* if we did not disable the cutoff bound in the LP solver, the LP solution status should be objective limit
12136 /* the LP solution objective should exceed the limit in this case; if this assert is triggered, it typically means
12137 * that the LP interface method SCIPlpiIsStable() lacks a check for this event and incorrectly returned TRUE */
12147 /* because of numerical instability lpalgo != lp->lastlpalgo might happen - hence, we have to check both */
12148 if( needdualray && !SCIPlpiHasDualRay(lp->lpi) && !solveddual && lpalgo != SCIP_LPALGO_DUALSIMPLEX )
12159 /* because of numerical instability lpalgo != lp->lastlpalgo might happen - hence, we have to check both */
12160 if( needprimalray && !SCIPlpiIsPrimalUnbounded(lp->lpi) && !solvedprimal && lpalgo != SCIP_LPALGO_PRIMALSIMPLEX )
12174 /* The lpobjval might be infinite, e.g. if the LP solver was not able to produce a valid bound while reaching the
12175 iteration limit. In this case, we avoid the warning in adjustLPobjval() by setting the messagehdlr to NULL. */
12193 "(node %" SCIP_LONGINT_FORMAT ") solution status of LP %" SCIP_LONGINT_FORMAT " could not be proven (internal status:%d) -- solve again with %s\n",
12202 "(node %" SCIP_LONGINT_FORMAT ") solution status of LP %" SCIP_LONGINT_FORMAT " could not be proven (internal status:%d) -- solve again with %s\n",
12208 SCIPerrorMessage("(node %" SCIP_LONGINT_FORMAT ") error or unknown return status of %s in LP %" SCIP_LONGINT_FORMAT " (internal status: %d)\n",
12216 SCIPsetDebugMsg(set, "solving LP with %s returned solstat=%d (internal status: %d, primalfeasible=%u, dualfeasible=%u)\n",
12223/** flushes the LP and solves it with the primal or dual simplex algorithm, depending on the current basis feasibility */
12233 int resolveitlim, /**< maximal number of LP iterations to perform in resolving calls, or -1 for no limit */
12234 int harditlim, /**< maximal number of LP iterations to perform (hard limit for all LP calls), or -1 for no limit */
12240 SCIP_Bool fromscratch, /**< should the LP be solved from scratch without using current basis? */
12242 SCIP_Bool keepsol, /**< should the old LP solution be kept if no iterations were performed? */
12255 fastmip = ((!lp->flushaddedcols && !lp->flushdeletedcols) ? fastmip : 0); /* turn off FASTMIP if columns were changed */
12268 SCIP_CALL( lpSolve(lp, set, messagehdlr, stat, prob, SCIP_LPALGO_DUALSIMPLEX, resolveitlim, harditlim, needprimalray,
12269 needdualray, resolve, fastmip, tightprimfeastol, tightdualfeastol, fromscratch, scaling, keepsol, lperror) );
12274 SCIP_CALL( lpSolve(lp, set, messagehdlr, stat, prob, SCIP_LPALGO_PRIMALSIMPLEX, resolveitlim, harditlim, needprimalray,
12275 needdualray, resolve, fastmip, tightprimfeastol, tightdualfeastol, fromscratch, scaling, keepsol, lperror) );
12281 SCIP_CALL( lpSolve(lp, set, messagehdlr, stat, prob, SCIP_LPALGO_PRIMALSIMPLEX, resolveitlim, harditlim, needprimalray,
12282 needdualray, resolve, fastmip, tightprimfeastol, tightdualfeastol, fromscratch, scaling, keepsol, lperror) );
12287 SCIP_CALL( lpSolve(lp, set, messagehdlr, stat, prob, SCIP_LPALGO_DUALSIMPLEX, resolveitlim, harditlim, needprimalray,
12288 needdualray, resolve, fastmip, tightprimfeastol, tightdualfeastol, fromscratch, scaling, keepsol, lperror) );
12293 SCIP_CALL( lpSolve(lp, set, messagehdlr, stat, prob, SCIP_LPALGO_BARRIER, resolveitlim, harditlim, needprimalray,
12294 needdualray, resolve, fastmip, tightprimfeastol, tightdualfeastol, fromscratch, scaling, keepsol, lperror) );
12299 SCIP_CALL( lpSolve(lp, set, messagehdlr, stat, prob, SCIP_LPALGO_BARRIERCROSSOVER, resolveitlim, harditlim, needprimalray,
12300 needdualray, resolve, fastmip, tightprimfeastol, tightdualfeastol, fromscratch, scaling, keepsol, lperror) );
12330 assert(SCIPsetIsInfinity(set, -col->lazylb) || SCIPsetIsFeasGE(set, col->primsol, col->lazylb));
12331 assert(SCIPsetIsInfinity(set, col->lazyub) || SCIPsetIsFeasLE(set, col->primsol, col->lazyub));
12338/** marks all lazy columns to be changed; this is needed for reloading/removing bounds of these columns before and after
12358 SCIPsetDebugMsg(set, "mark all lazy columns as changed in order to reload bounds (diving=%u, applied=%u)\n",
12368 assert((!(lp->divinglazyapplied)) || (col->flushedlb == col->lb) || col->lbchanged); /*lint !e777*/
12382 assert((!(lp->divinglazyapplied)) || (col->flushedub == col->ub) || col->ubchanged); /*lint !e777*/
12394 /* update lp->divinglazyapplied flag: if we are in diving mode, we just applied the lazy bounds,
12413 /* set itlim to INT_MAX if it is -1 to reduce the number of cases to be regarded in the following */
12416 /* return resolveiterfac * average iteration number per call after root, but at least resolveitermin and at most the hard iteration limit */
12418 (set->lp_resolveiterfac * (stat->nlpiterations - stat->nrootlpiterations) / (SCIP_Real)(stat->nlps - stat->nrootlps))));
12437 SCIP_Bool keepsol, /**< should the old LP solution be kept if no iterations were performed? */
12462 SCIPsetDebugMsg(set, "solving LP: %d rows, %d cols, primalfeasible=%u, dualfeasible=%u, solved=%u, diving=%u, probing=%u, cutoffbnd=%g\n",
12463 lp->nrows, lp->ncols, lp->primalfeasible, lp->dualfeasible, lp->solved, lp->diving, lp->probing, lp->cutoffbound);
12470 /* compute the limit for the number of LP resolving iterations, if needed (i.e. if limitresolveiters == TRUE) */
12475 /* if there are lazy bounds, check whether the bounds should explicitly be put into the LP (diving was started)
12480 /* @todo avoid loosing primal feasibility here after changing the objective already did destroy dual feasibility;
12491 /* if the time limit was reached in the last call and the LP did not change, lp->solved is set to TRUE, but we want
12494 if( !lp->solved || (lp->lpsolstat == SCIP_LPSOLSTAT_TIMELIMIT && stat->status != SCIP_STATUS_TIMELIMIT) )
12511 fastmip = ((lp->lpihasfastmip && !lp->flushaddedcols && !lp->flushdeletedcols && stat->nnodes > 1) ? set->lp_fastmip : 0);
12523 SCIP_CALL( lpFlushAndSolve(lp, blkmem, set, messagehdlr, stat, prob, eventqueue, resolveitlim, harditlim, needprimalray,
12524 needdualray, fastmip, tightprimfeastol, tightdualfeastol, fromscratch, scaling, keepsol, lperror) );
12525 SCIPsetDebugMsg(set, "lpFlushAndSolve() returned solstat %d (error=%u)\n", SCIPlpGetSolstat(lp), *lperror);
12582 SCIPsetDebugMsg(set, "removed obsoletes - resolve LP again: %d rows, %d cols\n", lp->nrows, lp->ncols);
12589 SCIP_Bool simplex = (lp->lastlpalgo == SCIP_LPALGO_PRIMALSIMPLEX || lp->lastlpalgo == SCIP_LPALGO_DUALSIMPLEX);
12593 /* solution is infeasible (this can happen due to numerical problems): solve again without FASTMIP */
12595 "(node %" SCIP_LONGINT_FORMAT ") solution of LP %" SCIP_LONGINT_FORMAT " not optimal (pfeas=%u, dfeas=%u) -- solving again without FASTMIP\n",
12602 /* solution is infeasible (this can happen due to numerical problems): solve again with tighter feasibility
12606 "(node %" SCIP_LONGINT_FORMAT ") solution of LP %" SCIP_LONGINT_FORMAT " not optimal (pfeas=%u, dfeas=%u) -- solving again with tighter feasibility tolerance\n",
12614 /* solution is infeasible (this can happen due to numerical problems): solve again from scratch */
12616 "(node %" SCIP_LONGINT_FORMAT ") solution of LP %" SCIP_LONGINT_FORMAT " not optimal (pfeas=%u, dfeas=%u) -- solving again from scratch\n",
12630 lp->lpobjval, getFiniteLooseObjval(lp, set, prob), lp->lpobjval + getFiniteLooseObjval(lp, set, prob),
12636 if( !SCIPprobAllColsInLP(prob, set, lp) || set->lp_checkfarkas || set->lp_alwaysgetduals || set->misc_exactsolve )
12642 /* it might happen that we have no infeasibility proof for the current LP (e.g. if the LP was always solved
12648 "(node %" SCIP_LONGINT_FORMAT ") infeasibility of LP %" SCIP_LONGINT_FORMAT " could not be proven by dual ray\n", stat->nnodes, stat->nlps);
12661 SCIP_Bool simplex = (lp->lastlpalgo == SCIP_LPALGO_PRIMALSIMPLEX || lp->lastlpalgo == SCIP_LPALGO_DUALSIMPLEX);
12665 /* the Farkas proof does not prove infeasibility (this can happen due to numerical problems): solve again
12669 "(node %" SCIP_LONGINT_FORMAT ") proof of infeasible LP %" SCIP_LONGINT_FORMAT " not valid -- solving again without FASTMIP\n",
12680 "(node %" SCIP_LONGINT_FORMAT ") proof of infeasible LP %" SCIP_LONGINT_FORMAT " not valid -- solving again with tighter dual feasibility tolerance\n",
12687 /* the Farkas proof does not prove infeasibility (this can happen due to numerical problems): solve again
12691 "(node %" SCIP_LONGINT_FORMAT ") proof of infeasible LP %" SCIP_LONGINT_FORMAT " not valid -- solving again from scratch\n",
12698 /* the Farkas proof does not prove infeasibility (this can happen due to numerical problems) and nothing
12701 lpNumericalTroubleMessage(messagehdlr, set, stat, SCIP_VERBLEVEL_FULL, "unresolved, LP infeasible");
12736 SCIP_Bool simplex = (lp->lastlpalgo == SCIP_LPALGO_PRIMALSIMPLEX || lp->lastlpalgo == SCIP_LPALGO_DUALSIMPLEX);
12740 /* unbounded solution is infeasible (this can happen due to numerical problems): solve again without FASTMIP */
12742 "(node %" SCIP_LONGINT_FORMAT ") solution of unbounded LP %" SCIP_LONGINT_FORMAT " not optimal (pfeas=%u, rfeas=%u) -- solving again without FASTMIP\n",
12749 /* unbounded solution is infeasible (this can happen due to numerical problems): solve again with tighter feasibility
12753 "(node %" SCIP_LONGINT_FORMAT ") solution of unbounded LP %" SCIP_LONGINT_FORMAT " not optimal (pfeas=%u, rfeas=%u) -- solving again with tighter primal feasibility tolerance\n",
12760 /* unbounded solution is infeasible (this can happen due to numerical problems): solve again from scratch */
12762 "(node %" SCIP_LONGINT_FORMAT ") solution of unbounded LP %" SCIP_LONGINT_FORMAT " not optimal (pfeas=%u, rfeas=%u) -- solving again from scratch\n",
12769 /* unbounded solution is infeasible (this can happen due to numerical problems): solve again without scaling */
12771 "(node %" SCIP_LONGINT_FORMAT ") solution of unbounded LP %" SCIP_LONGINT_FORMAT " not optimal (pfeas=%u, rfeas=%u) -- solving without scaling\n",
12778 /* unbounded solution is infeasible (this can happen due to numerical problems) and nothing helped:
12781 lpNumericalTroubleMessage(messagehdlr, set, stat, SCIP_VERBLEVEL_FULL, "unresolved, LP unbounded");
12792 /* Some LP solvers, e.g. CPLEX With FASTMIP setting, do not apply the final pivot to reach the dual solution
12793 * exceeding the objective limit. In some cases like branch-and-price, however, we must make sure that a dual
12794 * feasible solution exists that exceeds the objective limit. Therefore, we have to continue solving it without
12795 * objective limit for at least one iteration. We first try to continue with FASTMIP for one additional simplex
12796 * iteration using the steepest edge pricing rule. If this does not fix the problem, we temporarily disable
12807 /* actually, SCIPsetIsGE(set, lp->lpobjval, lp->lpiuobjlim) should hold, but we are a bit less strict in
12814 /* do one additional simplex step if the computed dual solution doesn't exceed the objective limit */
12821 SCIPsetDebugMsg(set, "objval = %f < %f = lp->lpiobjlim, but status objlimit\n", objval, lp->lpiobjlim);
12823 /* we want to resolve from the current basis (also if the LP had to be solved from scratch) */
12836 FALSE, FALSE, TRUE, fastmip, tightprimfeastol, tightdualfeastol, fromscratch, scaling, keepsol, lperror) );
12857 SCIP_Bool simplex = (lp->lastlpalgo == SCIP_LPALGO_PRIMALSIMPLEX || lp->lastlpalgo == SCIP_LPALGO_DUALSIMPLEX);
12862 FALSE, FALSE, TRUE, fastmip, tightprimfeastol, tightdualfeastol, fromscratch, scaling, keepsol, lperror) );
12870 SCIPsetDebugMsg(set, " ---> new objval = %f (solstat: %d, without fastmip)\n", objval, solstat);
12877 SCIPsetDebugMsg(set, "unresolved error while resolving LP in order to exceed the objlimit\n");
12920 /* in debug mode, check that lazy bounds (if present) are not violated by an optimal LP solution */
12936 /* LP solution is not feasible or objective limit was reached without the LP value really exceeding
12950 lp->lpobjval, getFiniteLooseObjval(lp, set, prob), lp->lpobjval + getFiniteLooseObjval(lp, set, prob),
12964 /* it might happen that we have no infeasibility proof for the current LP (e.g. if the LP was always solved
12970 "(node %" SCIP_LONGINT_FORMAT ") infeasibility of LP %" SCIP_LONGINT_FORMAT " could not be proven by dual ray\n", stat->nnodes, stat->nlps);
12982 SCIP_Bool simplex = (lp->lastlpalgo == SCIP_LPALGO_PRIMALSIMPLEX || lp->lastlpalgo == SCIP_LPALGO_DUALSIMPLEX);
12990 "(node %" SCIP_LONGINT_FORMAT ") proof of infeasible LP %" SCIP_LONGINT_FORMAT " not valid -- solving again with tighter primal feasibility tolerance\n",
12997 /* the Farkas proof does not prove infeasibility (this can happen due to numerical problems): solve again
13001 "(node %" SCIP_LONGINT_FORMAT ") proof of infeasible LP %" SCIP_LONGINT_FORMAT " not valid -- solving again from scratch\n",
13008 /* the Farkas proof does not prove infeasibility (this can happen due to numerical problems) and nothing
13011 lpNumericalTroubleMessage(messagehdlr, set, stat, SCIP_VERBLEVEL_FULL, "unresolved, LP infeasible");
13051 lpNumericalTroubleMessage(messagehdlr, set, stat, SCIP_VERBLEVEL_FULL, "unresolved, unbounded LP");
13081 SCIPmessagePrintWarning(messagehdlr, "LP solver reached time limit, but SCIP time limit is not exceeded yet; "
13102 /* if the LP had to be solved from scratch, we have to reset this flag since it is stored in the LPI; otherwise it
13108 SCIPsetDebugMsg(set, "resetting parameter SCIP_LPPARAM_FROMSCRATCH to FALSE %s\n", success ? "" : "failed");
13128 * @note This method returns the objective value of the current LP solution, which might be primal or dual infeasible
13129 * if a limit was hit during solving. It must not be used as a dual bound if the LP solution status is
13280/** gets the global pseudo objective value; that is all variables set to their best (w.r.t. the objective function)
13301 /* if the global pseudo objective value is smaller than -infinity, we just return -infinity */
13312/** gets the pseudo objective value for the current search node; that is all variables set to their best (w.r.t. the
13344/** gets pseudo objective value, if a bound of the given variable would be modified in the given way */
13382/** gets pseudo objective value, if a bound of the given variable would be modified in the given way;
13648/** updates current pseudo and loose objective values for a change in a variable's objective value or bounds */
13683 /* after changing a local bound on a LOOSE variable, we have to update the loose objective value, too */
13728/** updates current pseudo and loose objective values for a change in a variable's objective value or bounds;
13762 if( SCIPvarGetStatus(var) != SCIP_VARSTATUS_LOOSE && SCIPvarGetStatus(var) != SCIP_VARSTATUS_COLUMN )
13783 SCIPintervalSub(SCIPsetInfinity(set), &deltaval, deltaval, prod); /* deltaval -= oldlb * oldobj; */
13795 SCIPintervalSub(SCIPsetInfinity(set), &deltaval, deltaval, prod); /* deltaval -= oldub * oldobj; */
13809 SCIPintervalAdd(SCIPsetInfinity(set), &deltaval, deltaval, prod); /* deltaval += newlb * newobj; */
13821 SCIPintervalAdd(SCIPsetInfinity(set), &deltaval, deltaval, prod); /* deltaval += newub * newobj; */
13844/** updates current pseudo and loose objective value for a change in a variable's objective coefficient */
13860 SCIP_CALL( lpUpdateVarProved(lp, set, var, oldobj, SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var),
13871 assert(SCIPvarGetStatus(var) == SCIP_VARSTATUS_LOOSE || SCIPvarGetStatus(var) == SCIP_VARSTATUS_COLUMN);
13874 /* the objective coefficient can only be changed during presolving, that implies that the global and local
13881 getObjvalDeltaObj(set, oldobj, newobj, SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var), &deltaval, &deltainf);
13887 getObjvalDeltaObj(set, oldobj, newobj, SCIPvarGetLbGlobal(var), SCIPvarGetUbGlobal(var), &deltaval, &deltainf);
13898/** updates current root pseudo objective value for a global change in a variable's lower bound */
13925/** updates current pseudo and loose objective value for a change in a variable's lower bound */
13952 assert(SCIPvarGetStatus(var) == SCIP_VARSTATUS_LOOSE || SCIPvarGetStatus(var) == SCIP_VARSTATUS_COLUMN);
13966/** updates current root pseudo objective value for a global change in a variable's upper bound */
14020 assert(SCIPvarGetStatus(var) == SCIP_VARSTATUS_LOOSE || SCIPvarGetStatus(var) == SCIP_VARSTATUS_COLUMN);
14042 assert(SCIPvarGetStatus(var) == SCIP_VARSTATUS_LOOSE || SCIPvarGetStatus(var) == SCIP_VARSTATUS_COLUMN);
14063 assert(SCIPvarGetStatus(var) == SCIP_VARSTATUS_LOOSE || SCIPvarGetStatus(var) == SCIP_VARSTATUS_COLUMN);
14161 SCIPintervalSub(SCIPsetInfinity(set), &loose, loose, prod); /* lp->looseobjval -= lb * obj; */
14174 SCIPintervalSub(SCIPsetInfinity(set), &loose, loose, prod); /* lp->looseobjval -= ub * obj; */
14179 /* get rid of numerical problems: set loose objective value explicitly to zero, if no loose variables remain */
14292 SCIPintervalAdd(SCIPsetInfinity(set), &loose, loose, prod); /* lp->looseobjval += lb * obj; */
14305 SCIPintervalAdd(SCIPsetInfinity(set), &loose, loose, prod); /* lp->looseobjval += ub * obj; */
14346 /* get rid of numerical problems: set loose objective value explicitly to zero, if no loose variables remain */
14359 SCIP_Bool* primalfeasible, /**< pointer to store whether the solution is primal feasible, or NULL */
14360 SCIP_Bool* dualfeasible /**< pointer to store whether the solution is dual feasible, or NULL */
14390 /* initialize return and feasibility flags; if primal oder dual feasibility shall not be checked, we set the
14454 * thus change the solution here to a reasonable value (0.0) and declare it as neither primal nor dual feasible
14460 SCIPsetDebugMsg(set, " col <%s>: primsol=%.9f is not finite\n", SCIPvarGetName(lpicols[c]->var), primsol[c]);
14470 (SCIPsetIsInfinity(set, -lpicols[c]->lb) || SCIPlpIsFeasGE(set, lp, lpicols[c]->primsol, lpicols[c]->lb))
14471 && (SCIPsetIsInfinity(set, lpicols[c]->ub) || SCIPlpIsFeasLE(set, lp, lpicols[c]->primsol, lpicols[c]->ub));
14478 /* complementary slackness in barrier solutions is measured as product of primal slack and dual multiplier;
14479 * we use a slack of at most 1, because otherwise we multiply by something like SCIPinfinty() for unbounded
14493 SCIPsetDebugMsg(set, " col <%s> [%.9g,%.9g]: primsol=%.9f, redcost=%.9f, pfeas=%u/%u(%u), dfeas=%d/%d(%u)\n",
14494 SCIPvarGetName(lpicols[c]->var), lpicols[c]->lb, lpicols[c]->ub, lpicols[c]->primsol, lpicols[c]->redcost,
14498 !SCIPsetIsDualfeasPositive(set, MIN((lpicols[c]->primsol - lpicols[c]->lb), 1.0) * lpicols[c]->redcost),
14499 !SCIPsetIsDualfeasNegative(set, MIN((lpicols[c]->ub - lpicols[c]->primsol), 1.0) * lpicols[c]->redcost),
14510 /* complementary slackness means that if a variable is not at its lower or upper bound, its reduced costs
14511 * must be non-positive or non-negative, respectively; in particular, if a variable is strictly within its
14515 && (SCIPsetIsInfinity(set, -lpicols[c]->lb) || SCIPlpIsFeasGT(set, lp, lpicols[c]->primsol, lpicols[c]->lb)) )
14518 && (SCIPsetIsInfinity(set, lpicols[c]->ub) || SCIPlpIsFeasLT(set, lp, lpicols[c]->primsol, lpicols[c]->ub)) )
14521 SCIPsetDebugMsg(set, " col <%s> [%.9g,%.9g]: primsol=%.9f, redcost=%.9f, pfeas=%u/%u(%u), dfeas=%d/%d(%u)\n",
14522 SCIPvarGetName(lpicols[c]->var), lpicols[c]->lb, lpicols[c]->ub, lpicols[c]->primsol, lpicols[c]->redcost,
14526 !SCIPlpIsFeasGT(set, lp, lpicols[c]->primsol, lpicols[c]->lb) || !SCIPsetIsDualfeasPositive(set, lpicols[c]->redcost),
14527 !SCIPlpIsFeasLT(set, lp, lpicols[c]->primsol, lpicols[c]->ub) || !SCIPsetIsDualfeasNegative(set, lpicols[c]->redcost),
14531 /* we intentionally use an exact positive/negative check because ignoring small reduced cost values may lead to a
14532 * wrong bound value; if the corresponding bound is +/-infinity, we use zero reduced cost (if stilldualfeasible is
14561 (SCIPsetIsInfinity(set, -lpirows[r]->lhs) || SCIPlpIsFeasGE(set, lp, lpirows[r]->activity, lpirows[r]->lhs))
14562 && (SCIPsetIsInfinity(set, lpirows[r]->rhs) || SCIPlpIsFeasLE(set, lp, lpirows[r]->activity, lpirows[r]->rhs));
14568 /* complementary slackness in barrier solutions is measured as product of primal slack and dual multiplier;
14569 * we use a slack of at most 1, because otherwise we multiply by something like SCIPinfinity() for unbounded
14583 SCIPsetDebugMsg(set, " row <%s> [%.9g,%.9g]: activity=%.9f, dualsol=%.9f, pfeas=%u/%u(%u), dfeas=%d/%d(%u)\n",
14584 lpirows[r]->name, lpirows[r]->lhs, lpirows[r]->rhs, lpirows[r]->activity, lpirows[r]->dualsol,
14588 !SCIPsetIsDualfeasPositive(set, MIN((lpirows[r]->activity - lpirows[r]->lhs), 1.0) * lpirows[r]->dualsol),
14589 !SCIPsetIsDualfeasNegative(set, MIN((lpirows[r]->rhs - lpirows[r]->activity), 1.0) * lpirows[r]->dualsol),
14594 /* complementary slackness means that if the activity of a row is not at its left-hand or right-hand side,
14595 * its dual multiplier must be non-positive or non-negative, respectively; in particular, if the activity is
14599 (SCIPsetIsInfinity(set, -lpirows[r]->lhs) || SCIPlpIsFeasGT(set, lp, lpirows[r]->activity, lpirows[r]->lhs)) )
14602 (SCIPsetIsInfinity(set,lpirows[r]->rhs) || SCIPlpIsFeasLT(set, lp, lpirows[r]->activity, lpirows[r]->rhs)) )
14605 SCIPsetDebugMsg(set, " row <%s> [%.9g,%.9g] + %.9g: activity=%.9f, dualsol=%.9f, pfeas=%u/%u(%u), dfeas=%d/%d(%u)\n",
14606 lpirows[r]->name, lpirows[r]->lhs, lpirows[r]->rhs, lpirows[r]->constant, lpirows[r]->activity, lpirows[r]->dualsol,
14610 !SCIPlpIsFeasGT(set, lp, lpirows[r]->activity, lpirows[r]->lhs) || !SCIPsetIsDualfeasPositive(set, lpirows[r]->dualsol),
14611 !SCIPlpIsFeasLT(set, lp, lpirows[r]->activity, lpirows[r]->rhs) || !SCIPsetIsDualfeasNegative(set, lpirows[r]->dualsol),
14615 /* we intentionally use an exact positive/negative check because ignoring small dual multipliers may lead to a
14616 * wrong bound value; if the corresponding side is +/-infinity, we use a zero dual multiplier (if
14617 * stilldualfeasible is TRUE, we are in the case that the dual multiplier is tiny with wrong sign)
14628 /* if the objective value returned by the LP solver is smaller than the internally computed primal bound, then we
14629 * declare the solution primal infeasible; we assume primalbound and lp->lpobjval to be equal if they are both +/-
14632 /**@todo alternatively, if otherwise the LP solution is feasible, we could simply update the objective value */
14633 if( stillprimalfeasible && !(SCIPsetIsInfinity(set, primalbound) && SCIPsetIsInfinity(set, lp->lpobjval))
14637 SCIPsetDebugMsg(set, " primalbound=%.9f, lpbound=%.9g, pfeas=%u(%u)\n", primalbound, lp->lpobjval,
14638 SCIPsetIsFeasLE(set, primalbound, lp->lpobjval), primalfeasible != NULL ? stillprimalfeasible : TRUE);
14641 /* if the objective value returned by the LP solver is smaller than the internally computed dual bound, we declare
14642 * the solution dual infeasible; we assume dualbound and lp->lpobjval to be equal if they are both +/- infinity
14644 /**@todo alternatively, if otherwise the LP solution is feasible, we could simply update the objective value */
14645 if( stilldualfeasible && !(SCIPsetIsInfinity(set, dualbound) && SCIPsetIsInfinity(set, lp->lpobjval))
14649 SCIPsetDebugMsg(set, " dualbound=%.9f, lpbound=%.9g, dfeas=%u(%u)\n", dualbound, lp->lpobjval,
14650 SCIPsetIsFeasGE(set, dualbound, lp->lpobjval), dualfeasible != NULL ? stilldualfeasible : TRUE);
14676 SCIP_Bool* primalfeasible, /**< pointer to store whether the solution is primal feasible, or NULL */
14677 SCIP_Bool* rayfeasible /**< pointer to store whether the primal ray is a feasible unboundedness proof, or NULL */
14720 SCIPsetDebugMsg(set, "getting new unbounded LP solution %" SCIP_LONGINT_FORMAT "\n", stat->lpcount);
14736 /* calculate the objective value decrease of the ray and heuristically try to construct primal solution */
14745 /* there should only be a nonzero value in the ray if there is no finite bound in this direction */
14756 /* Many LP solvers cannot directly provide a feasible solution if they detected unboundedness. We therefore first
14773 assert( SCIPlpIsFeasGE(set, lp, primsol[c], col->lb) && SCIPlpIsFeasLE(set, lp, primsol[c], col->ub) );
14831 /* check whether primal solution satisfies the bounds; note that we also ensure that the primal
14832 * solution is within SCIP's infinity bounds; otherwise the rayscale below is not well-defined */
14833 if( SCIPsetIsInfinity(set, REALABS(primsol[c])) || SCIPlpIsFeasLT(set, lp, primsol[c], lpicols[c]->lb) ||
14962 SCIPsetDebugMsg(set, "unbounded LP solution: rayobjval=%f, rayscale=%f\n", rayobjval, rayscale);
14965 /* Note: We do not check the feasibility of the unbounded solution, because it will likely be infeasible due to the
14975 lpicols[c]->primsol = MAX(-SCIPsetInfinity(set), MIN(SCIPsetInfinity(set), primsolval)); /*lint !e666*/
15001 SCIP_Real* ray /**< array for storing primal ray values, they are stored w.r.t. the problem index of the variables,
15054/** stores the dual Farkas multipliers for infeasibility proof in rows. besides, the proof is checked for validity if
15138 if( (SCIPsetIsDualfeasGT(set, dualfarkas[r], 0.0) && SCIPsetIsInfinity(set, -lpirows[r]->lhs))
15139 || (SCIPsetIsDualfeasLT(set, dualfarkas[r], 0.0) && SCIPsetIsInfinity(set, lpirows[r]->rhs)) )
15141 SCIPsetDebugMsg(set, "farkas proof is invalid: row <%s>[lhs=%g,rhs=%g,c=%g] has multiplier %g\n",
15142 SCIProwGetName(lpirows[r]), lpirows[r]->lhs, lpirows[r]->rhs, lpirows[r]->constant, dualfarkas[r]);
15148 /* dual multipliers, for which the corresponding row side in infinite, are treated as zero if they are zero
15235 /* check whether the farkasproof is valid for relative epsilon tolerance to allow feasibility tightening */
15237 && ( SCIPsetIsInfinity(set, maxactivity) || SCIPsetIsInfinity(set, -farkaslhs) || SCIPsetIsRelGE(set, maxactivity, farkaslhs) ) )
15241 SCIPsetDebugMsg(set, "farkas proof is invalid: maxactivity=%.12f, lhs=%.12f\n", maxactivity, farkaslhs);
15244 SCIPmessagePrintWarning(set->scip->messagehdlr, "Unreliable farkas proof forced valid, result might not be optimal.\n");
15272/** increases age of columns with solution value 0.0 and basic rows with activity not at its bounds,
15327 /*debugMsg(scip, " -> row <%s>: activity=%f, age=%d\n", lpirows[r]->name, lpirows[r]->activity, lpirows[r]->age);*/
15369 /* mark column to be deleted from the LPI, update column arrays of all linked rows, and update the objective
15484 SCIP_CALL( SCIPeventqueueAdd(eventqueue, blkmem, set, NULL, NULL, NULL, eventfilter, &event) );
15577 && cols[c]->obsoletenode != stat->nnodes /* don't remove column a second time from same node (avoid cycling), or a first time if marked nonremovable locally */
15580 && SCIPsetIsZero(set, SCIPcolGetBestBound(cols[c])) ) /* bestbd != 0 -> column would be priced in next time */
15656 && rows[r]->obsoletenode != stat->nnodes /* don't remove row a second time from same node (avoid cycling), or a first time if marked nonremovable locally */
15683/** removes all non-basic columns and basic rows in the part of the LP created at the current node, that are too old */
15699 SCIPsetDebugMsg(set, "removing obsolete columns starting with %d/%d, obsolete rows starting with %d/%d\n",
15708 SCIP_CALL( lpRemoveObsoleteRows(lp, blkmem, set, stat, eventqueue, eventfilter, lp->firstnewrow) );
15789 && SCIPsetIsZero(set, SCIPcolGetBestBound(cols[c])) ) /* bestbd != 0 -> column would be priced in next time */
15883/** removes all non-basic columns at 0.0 and basic rows in the part of the LP created at the current node */
15907 SCIPsetDebugMsg(set, "removing unused columns starting with %d/%d (%u), unused rows starting with %d/%d (%u), LP algo: %d, basic sol: %u\n",
15908 lp->firstnewcol, lp->ncols, cleanupcols, lp->firstnewrow, lp->nrows, cleanuprows, lp->lastlpalgo, lp->solisbasic);
15946 SCIPsetDebugMsg(set, "removing all unused columns (%u) and rows (%u), LP algo: %d, basic sol: %u\n",
16121 SCIP_CALL( rowStoreSolVals(lp->rows[r], blkmem, lp->storedsolvals->lpsolstat == SCIP_LPSOLSTAT_INFEASIBLE) );
16141/** quits LP diving and resets bounds and objective values of columns to the current node's values */
16163 SCIPsetDebugMsg(set, "diving ended (LP flushed: %u, solstat: %d)\n", lp->flushed, SCIPlpGetSolstat(lp));
16206 /* reload LPI state saved at start of diving and free it afterwards; it may be NULL, in which case simply nothing
16210 lp->divelpwasprimfeas, lp->divelpwasprimchecked, lp->divelpwasdualfeas, lp->divelpwasdualchecked) );
16222 /* if the LP was solved before starting the dive, but not to optimality (or unboundedness), then we need to solve the
16223 * LP again to reset the solution (e.g. we do not save the Farkas proof for infeasible LPs, because we assume that we
16224 * are not called in this case, anyway); restoring by solving the LP again in either case can be forced by setting
16226 * restoring an unbounded ray after solve does not seem to work currently (bug 631), so we resolve also in this case
16230 && (set->lp_resolverestore || lp->storedsolvals->lpsolstat != SCIP_LPSOLSTAT_OPTIMAL || lp->divenolddomchgs < stat->domchgcount) )
16234 SCIP_CALL( SCIPlpSolveAndEval(lp, set, messagehdlr, blkmem, stat, eventqueue, eventfilter, prob, -1LL, FALSE, FALSE, FALSE, FALSE, &lperror) );
16237 lpNumericalTroubleMessage(messagehdlr, set, stat, SCIP_VERBLEVEL_FULL, "unresolved when resolving LP after diving");
16250 /* otherwise, we can just reload the buffered LP solution values at start of diving; this has the advantage that we
16251 * are guaranteed to continue with the same LP status as before diving, while in numerically difficult cases, a
16262 /* @todo avoid loosing primal feasibility here after changing the objective already did destroy dual feasibility;
16272 /* increment lp counter to ensure that we do not use solution values from the last solved diving lp */
16289 SCIP_CALL( colRestoreSolVals(lp->cols[c], blkmem, stat->lpcount, set->lp_freesolvalbuffers) );
16293 SCIP_CALL( rowRestoreSolVals(lp->rows[r], blkmem, stat->lpcount, set->lp_freesolvalbuffers, lp->storedsolvals->lpsolstat == SCIP_LPSOLSTAT_INFEASIBLE) );
16405 * Calculating this value in interval arithmetics gives a proved lower LP bound for the following reason (assuming,
16417 SCIP_Bool usefarkas, /**< use y = dual Farkas and c = 0 instead of y = dual solution and c = obj? */
16552 SCIPsetDebugMsg(set, "proved Farkas value of LP: %g -> infeasibility %sproved\n", bound, *proved ? "" : "not ");
16580 SCIP_Bool genericnames, /**< should generic names like x_i and row_j be used in order to avoid
16610 SCIPmessageFPrintInfo(messagehdlr, file, "\\ Original Variable and Constraint Names have been replaced by generic names.\n");
16613 SCIPmessageFPrintInfo(messagehdlr, file, "\\ Warning: Variable and Constraint Names should not contain special characters like '+', '=' etc.\n");
16614 SCIPmessageFPrintInfo(messagehdlr, file, "\\ If this is the case, the model may be corrupted!\n");
16619 SCIPmessageFPrintInfo(messagehdlr, file, "\\ An artificial variable 'objoffset' has been added and fixed to 1.\n");
16620 SCIPmessageFPrintInfo(messagehdlr, file, "\\ Switching this variable to 0 will disable the offset in the objective.\n\n");
16656 SCIPmessageFPrintInfo(messagehdlr, file, " %+.15g objoffset", objoffset * (SCIP_Real) objsense * objscale);
16668 /* constraint types: 'l' means: only lhs exists, 'r' means: only rhs exists, 'e' means: both sides exist and are
16669 * equal, 'b' and 'B' mean: both sides exist, if the type is 'b', the lhs will be written, if the type is 'B',
16670 * the rhs will be written. Ergo: set type to b first, change it to 'B' afterwards and go back to WRITEROW.
16672 if( SCIPsetIsInfinity(set, REALABS(lp->rows[i]->lhs)) && !SCIPsetIsInfinity(set, REALABS(lp->rows[i]->rhs)) )
16674 else if( !SCIPsetIsInfinity(set, REALABS(lp->rows[i]->lhs)) && SCIPsetIsInfinity(set, REALABS(lp->rows[i]->rhs)) )
16676 else if( !SCIPsetIsInfinity(set, REALABS(lp->rows[i]->lhs)) && SCIPsetIsEQ(set, lp->rows[i]->lhs, lp->rows[i]->rhs) )
16678 else if( !SCIPsetIsInfinity(set, REALABS(lp->rows[i]->lhs)) && !SCIPsetIsInfinity(set, REALABS(lp->rows[i]->rhs)) )
16697 SCIPmessageFPrintInfo(messagehdlr, file, "\\\\ WARNING: The lhs and the rhs of the row with original name <%s>", lp->rows[i]->name);
16698 SCIPmessageFPrintInfo(messagehdlr, file, "are not in a valid range. The following two constraints may be corrupted!\n");
16699 SCIPmessagePrintWarning(messagehdlr, "The lhs and rhs of row <%s> are not in a valid range.\n", lp->rows[i]->name);
16715 SCIPmessageFPrintInfo(messagehdlr, file, " %+.15g x_%d", lp->rows[i]->vals[j], lp->rows[i]->cols[j]->lppos);
16717 SCIPmessageFPrintInfo(messagehdlr, file, " %+.15g %s", lp->rows[i]->vals[j], lp->rows[i]->cols[j]->var->name);
16727 SCIPmessageFPrintInfo(messagehdlr, file, " >= %.15g\n", lp->rows[i]->lhs - lp->rows[i]->constant);
16731 SCIPmessageFPrintInfo(messagehdlr, file, " >= %.15g\n", lp->rows[i]->lhs - lp->rows[i]->constant);
16735 SCIPmessageFPrintInfo(messagehdlr, file, " <= %.15g\n", lp->rows[i]->rhs - lp->rows[i]->constant);
16738 SCIPmessageFPrintInfo(messagehdlr, file, " = %.15g\n", lp->rows[i]->lhs - lp->rows[i]->constant);
16759 /* constraint types: 'l' means: only lhs exists, 'r' means: only rhs exists, 'e' means: both sides exist and are
16760 * equal, 'b' and 'B' mean: both sides exist, if the type is 'b', the lhs will be written, if the type is 'B',
16761 * the rhs will be written. Ergo: set type to b first, change it to 'B' afterwards and go back to WRITEROW.
16763 if( SCIPsetIsInfinity(set, REALABS(lp->rows[i]->lhs)) && !SCIPsetIsInfinity(set, REALABS(lp->rows[i]->rhs)) )
16765 else if( !SCIPsetIsInfinity(set, REALABS(lp->rows[i]->lhs)) && SCIPsetIsInfinity(set, REALABS(lp->rows[i]->rhs)) )
16767 else if( !SCIPsetIsInfinity(set, REALABS(lp->rows[i]->lhs)) && SCIPsetIsEQ(set, lp->rows[i]->lhs, lp->rows[i]->rhs) )
16769 else if( !SCIPsetIsInfinity(set, REALABS(lp->rows[i]->lhs)) && !SCIPsetIsInfinity(set, REALABS(lp->rows[i]->rhs)) )
16788 SCIPmessageFPrintInfo(messagehdlr, file, "\\\\ WARNING: The lhs and the rhs of the row with original name <%s>", lp->rows[i]->name);
16789 SCIPmessageFPrintInfo(messagehdlr, file, "are not in a valid range. The following two constraints may be corrupted!\n");
16790 SCIPmessagePrintWarning(messagehdlr, "The lhs and rhs of row <%s> are not in a valid range.\n",lp->rows[i]->name);
16806 SCIPmessageFPrintInfo(messagehdlr, file, " %+.15g x_%d", lp->rows[i]->vals[j], lp->rows[i]->cols[j]->lppos);
16808 SCIPmessageFPrintInfo(messagehdlr, file, " %+.15g %s", lp->rows[i]->vals[j], lp->rows[i]->cols[j]->var->name);
16818 SCIPmessageFPrintInfo(messagehdlr, file, " >= %.15g\n", lp->rows[i]->lhs - lp->rows[i]->constant);
16822 SCIPmessageFPrintInfo(messagehdlr, file, " >= %.15g\n", lp->rows[i]->lhs - lp->rows[i]->constant);
16826 SCIPmessageFPrintInfo(messagehdlr, file, " <= %.15g\n", lp->rows[i]->rhs - lp->rows[i]->constant);
16829 SCIPmessageFPrintInfo(messagehdlr, file, " = %.15g\n", lp->rows[i]->lhs - lp->rows[i]->constant);
17061/** gets the basis status of a column in the LP solution; only valid for LPs with status SCIP_LPSOLSTAT_OPTIMAL
17062 * and with SCIPisLPSolBasic(scip) == TRUE; returns SCIP_BASESTAT_ZERO for columns not in the current SCIP_LP
17104/** returns whether the associated variable is of integral type (binary, integer, implicit integer) */
17168/** get number of nonzero entries in column vector, that correspond to rows currently in the SCIP_LP;
17170 * @warning This method is only applicable on columns, that are completely linked to their rows (e.g. a column
17171 * that is in the current LP and the LP was solved, or a column that was in a solved LP and didn't change afterwards
17203/** gets node number of the last node in current branch and bound run, where strong branching was used on the
17225/** gets the age of a column, i.e., the total number of successive times a column was in the LP and was 0.0 in the solution */
17255/** get number of nonzero entries in row vector, that correspond to columns currently in the SCIP_LP;
17257 * @warning This method is only applicable on rows, that are completely linked to their columns (e.g. a row
17258 * that is in the current LP and the LP was solved, or a row that was in a solved LP and didn't change afterwards
17370/** gets the basis status of a row in the LP solution; only valid for LPs with status SCIP_LPSOLSTAT_OPTIMAL
17371 * and with SCIPisLPSolBasic(scip) == TRUE; returns SCIP_BASESTAT_BASIC for rows not in the current SCIP_LP
17423/** returns TRUE iff the activity of the row (without the row's constant) is always integral in a feasible solution */
17443/** returns TRUE iff row is modifiable during node processing (subject to column generation) */
17708/** recalculates Euclidean norm of objective function vector of column variables if it have gotten unreliable during calculation */
17730 /* due to numerical troubles it still can appear that lp->objsqrnorm is a little bit smaller than 0 */
17738/** gets Euclidean norm of objective function vector of column variables, only use this method if
17739 * lp->objsqrnormunreliable == FALSE, so probably you have to call SCIPlpRecalculateObjSqrNorm before */
17751/** sets whether the root lp is a relaxation of the problem and its optimal objective value is a global lower bound */
17762/** returns whether the root lp is a relaxation of the problem and its optimal objective value is a global lower bound */
17772/** gets the objective value of the root node LP; returns SCIP_INVALID if the root node LP was not (yet) solved */
17782/** gets part of the objective value of the root node LP that results from COLUMN variables only;
17794/** gets part of the objective value of the root node LP that results from LOOSE variables only;
17816/** sets whether the current LP is a relaxation of the current problem and its optimal objective value is a local lower bound */
17827/** returns whether the current LP is a relaxation of the problem for which it has been solved and its
17889/** returns whether the LP is in diving mode and the objective value of at least one column was changed */
17921/* returns TRUE if at least one left/right hand side of an LP row was changed during diving mode */
17945 SCIP_Bool* success /**< buffer to indicate whether interior point was successfully computed */
17978 SCIPmessagePrintWarning(messagehdlr, "Could not set feasibility tolerance of LP solver for relative interior point computation.\n");
17986 SCIPmessagePrintWarning(messagehdlr, "Could not set dual feasibility tolerance of LP solver for relative interior point computation.\n");
17999 /* note: if the variable is fixed we cannot simply fix the variables (because alpha scales the problem) */
18426 SCIP_CALL( SCIPlpiAddRows(lpi, ntotrows, matlhs, matrhs, NULL, matidx, matbeg, matinds, matvals) );
18453 SCIPmessagePrintWarning(messagehdlr, "Could not set time limit of LP solver for relative interior point computation.\n");
18462 SCIPmessagePrintWarning(messagehdlr, "Could not set iteration limit of LP solver for relative interior point computation.\n");
18472 SCIPmessagePrintWarning(messagehdlr, "Iteration limit exceeded in relative interior point computation.\n");
18474 SCIPmessagePrintWarning(messagehdlr, "Time limit exceeded in relative interior point computation.\n");
18579 assert( SCIPsetIsFeasZero(set, primal[lp->ncols+1+cnt]) || SCIPsetIsFeasGT(set, val, col->lb) );
18585 assert( SCIPsetIsFeasZero(set, primal[lp->ncols+1+cnt]) || SCIPsetIsFeasLT(set, val, col->ub) );
18605 * "Identifying the Set of Always-Active Constraints in a System of Linear Inequalities by a Single Linear Program"@par
18632 * If the original LP is feasible, this LP is feasible as well. Any optimal solution yields the relative interior point
18633 * \f$x^*_j/\alpha^*\f$. Note that this will just produce some relative interior point. It does not produce a
18634 * particular relative interior point, e.g., one that maximizes the distance to the boundary in some norm.
18646 SCIP_Bool* success /**< buffer to indicate whether interior point was successfully computed */
18670 if( inclobjcutoff && (SCIPsetIsInfinity(set, lp->cutoffbound) || lp->looseobjvalinf > 0 || lp->looseobjval == SCIP_INVALID) ) /*lint !e777 */
18689 retcode = computeRelIntPoint(lpi, set, messagehdlr, lp, prob, relaxrows, inclobjcutoff, timelimit, iterlimit, point, success);
18702/** computes two measures for dual degeneracy (dual degeneracy rate and variable-constraint ratio)
18706 * and the variable-constraint ratio, i.e., the number of unfixed variables in relation to the basis size
18766 /* count number of rows that will be turned into equations when reducing the LP to the optimal face */
18808 assert(nfixedcols + nfixedrows <= ncols + nineq + nbasicequalities - nrows - nalreadyfixedcols - nimplicitfixedrows);
18811 lp->degeneracy = 1.0 - 1.0 * (nfixedcols + nfixedrows) / (ncols + nineq - nrows + nbasicequalities - nalreadyfixedcols);
18816 lp->varconsratio = 1.0 * (ncols + nineq + nbasicequalities - nfixedcols - nfixedrows - nalreadyfixedcols) / nrows;
internal methods for clocks and timing issues
SCIP_RETCODE SCIPconsRelease(SCIP_CONS **cons, BMS_BLKMEM *blkmem, SCIP_SET *set)
Definition: cons.c:6274
internal methods for constraints and constraint handlers
SCIP_RETCODE SCIPeventCreateRowDeletedLP(SCIP_EVENT **event, BMS_BLKMEM *blkmem, SCIP_ROW *row)
Definition: event.c:913
SCIP_RETCODE SCIPeventqueueAdd(SCIP_EVENTQUEUE *eventqueue, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_PRIMAL *primal, SCIP_LP *lp, SCIP_BRANCHCAND *branchcand, SCIP_EVENTFILTER *eventfilter, SCIP_EVENT **event)
Definition: event.c:2240
SCIP_RETCODE SCIPeventfilterFree(SCIP_EVENTFILTER **eventfilter, BMS_BLKMEM *blkmem, SCIP_SET *set)
Definition: event.c:1846
SCIP_RETCODE SCIPeventCreateRowSideChanged(SCIP_EVENT **event, BMS_BLKMEM *blkmem, SCIP_ROW *row, SCIP_SIDETYPE side, SCIP_Real oldval, SCIP_Real newval)
Definition: event.c:980
SCIP_RETCODE SCIPeventfilterDel(SCIP_EVENTFILTER *eventfilter, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTTYPE eventtype, SCIP_EVENTHDLR *eventhdlr, SCIP_EVENTDATA *eventdata, int filterpos)
Definition: event.c:1979
SCIP_RETCODE SCIPeventfilterCreate(SCIP_EVENTFILTER **eventfilter, BMS_BLKMEM *blkmem)
Definition: event.c:1821
SCIP_RETCODE SCIPeventCreateRowConstChanged(SCIP_EVENT **event, BMS_BLKMEM *blkmem, SCIP_ROW *row, SCIP_Real oldval, SCIP_Real newval)
Definition: event.c:957
SCIP_RETCODE SCIPeventfilterAdd(SCIP_EVENTFILTER *eventfilter, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTTYPE eventtype, SCIP_EVENTHDLR *eventhdlr, SCIP_EVENTDATA *eventdata, int *filterpos)
Definition: event.c:1886
SCIP_RETCODE SCIPeventCreateRowCoefChanged(SCIP_EVENT **event, BMS_BLKMEM *blkmem, SCIP_ROW *row, SCIP_COL *col, SCIP_Real oldval, SCIP_Real newval)
Definition: event.c:932
SCIP_RETCODE SCIPeventCreateRowAddedLP(SCIP_EVENT **event, BMS_BLKMEM *blkmem, SCIP_ROW *row)
Definition: event.c:894
internal methods for managing events
SCIP_RETCODE SCIPlpiChgSides(SCIP_LPI *lpi, int nrows, const int *ind, const SCIP_Real *lhs, const SCIP_Real *rhs)
Definition: lpi_clp.cpp:1179
SCIP_RETCODE SCIPlpiSetState(SCIP_LPI *lpi, BMS_BLKMEM *blkmem, const SCIP_LPISTATE *lpistate)
Definition: lpi_clp.cpp:3457
SCIP_RETCODE SCIPlpiGetBInvACol(SCIP_LPI *lpi, int c, SCIP_Real *coef, int *inds, int *ninds)
Definition: lpi_clp.cpp:3377
SCIP_RETCODE SCIPlpiGetRealpar(SCIP_LPI *lpi, SCIP_LPPARAM type, SCIP_Real *dval)
Definition: lpi_clp.cpp:3824
SCIP_RETCODE SCIPlpiGetBase(SCIP_LPI *lpi, int *cstat, int *rstat)
Definition: lpi_clp.cpp:2995
SCIP_RETCODE SCIPlpiAddRows(SCIP_LPI *lpi, int nrows, const SCIP_Real *lhs, const SCIP_Real *rhs, char **rownames, int nnonz, const int *beg, const int *ind, const SCIP_Real *val)
Definition: lpi_clp.cpp:920
SCIP_RETCODE SCIPlpiGetPrimalRay(SCIP_LPI *lpi, SCIP_Real *ray)
Definition: lpi_clp.cpp:2860
SCIP_RETCODE SCIPlpiGetIntpar(SCIP_LPI *lpi, SCIP_LPPARAM type, int *ival)
Definition: lpi_clp.cpp:3676
SCIP_RETCODE SCIPlpiWriteLP(SCIP_LPI *lpi, const char *fname)
Definition: lpi_clp.cpp:4029
SCIP_RETCODE SCIPlpiSetIntegralityInformation(SCIP_LPI *lpi, int ncols, int *intInfo)
Definition: lpi_clp.cpp:480
SCIP_RETCODE SCIPlpiSetRealpar(SCIP_LPI *lpi, SCIP_LPPARAM type, SCIP_Real dval)
Definition: lpi_clp.cpp:3861
SCIP_RETCODE SCIPlpiStrongbranchFrac(SCIP_LPI *lpi, int col, SCIP_Real psol, int itlim, SCIP_Real *down, SCIP_Real *up, SCIP_Bool *downvalid, SCIP_Bool *upvalid, int *iter)
Definition: lpi_clp.cpp:2311
SCIP_RETCODE SCIPlpiSetNorms(SCIP_LPI *lpi, BMS_BLKMEM *blkmem, const SCIP_LPINORMS *lpinorms)
Definition: lpi_clp.cpp:3638
SCIP_RETCODE SCIPlpiStrongbranchInt(SCIP_LPI *lpi, int col, SCIP_Real psol, int itlim, SCIP_Real *down, SCIP_Real *up, SCIP_Bool *downvalid, SCIP_Bool *upvalid, int *iter)
Definition: lpi_clp.cpp:2357
SCIP_RETCODE SCIPlpiGetBounds(SCIP_LPI *lpi, int firstcol, int lastcol, SCIP_Real *lbs, SCIP_Real *ubs)
Definition: lpi_clp.cpp:1733
SCIP_RETCODE SCIPlpiGetDualfarkas(SCIP_LPI *lpi, SCIP_Real *dualfarkas)
Definition: lpi_clp.cpp:2885
SCIP_RETCODE SCIPlpiGetObjval(SCIP_LPI *lpi, SCIP_Real *objval)
Definition: lpi_clp.cpp:2794
SCIP_RETCODE SCIPlpiStartStrongbranch(SCIP_LPI *lpi)
Definition: lpi_clp.cpp:2034
SCIP_RETCODE SCIPlpiGetSolFeasibility(SCIP_LPI *lpi, SCIP_Bool *primalfeasible, SCIP_Bool *dualfeasible)
Definition: lpi_clp.cpp:2433
SCIP_RETCODE SCIPlpiFreeNorms(SCIP_LPI *lpi, BMS_BLKMEM *blkmem, SCIP_LPINORMS **lpinorms)
Definition: lpi_clp.cpp:3651
SCIP_RETCODE SCIPlpiChgBounds(SCIP_LPI *lpi, int ncols, const int *ind, const SCIP_Real *lb, const SCIP_Real *ub)
Definition: lpi_clp.cpp:1096
SCIP_Bool SCIPlpiIsPrimalUnbounded(SCIP_LPI *lpi)
Definition: lpi_clp.cpp:2516
SCIP_RETCODE SCIPlpiIgnoreInstability(SCIP_LPI *lpi, SCIP_Bool *success)
Definition: lpi_clp.cpp:1669
SCIP_RETCODE SCIPlpiStrongbranchesFrac(SCIP_LPI *lpi, int *cols, int ncols, SCIP_Real *psols, int itlim, SCIP_Real *down, SCIP_Real *up, SCIP_Bool *downvalid, SCIP_Bool *upvalid, int *iter)
Definition: lpi_clp.cpp:2332
SCIP_RETCODE SCIPlpiGetNorms(SCIP_LPI *lpi, BMS_BLKMEM *blkmem, SCIP_LPINORMS **lpinorms)
Definition: lpi_clp.cpp:3620
SCIP_Bool SCIPlpiHasStateBasis(SCIP_LPI *lpi, SCIP_LPISTATE *lpistate)
Definition: lpi_clp.cpp:3550
SCIP_RETCODE SCIPlpiSetIntpar(SCIP_LPI *lpi, SCIP_LPPARAM type, int ival)
Definition: lpi_clp.cpp:3720
SCIP_RETCODE SCIPlpiGetBInvRow(SCIP_LPI *lpi, int r, SCIP_Real *coef, int *inds, int *ninds)
Definition: lpi_clp.cpp:3269
SCIP_RETCODE SCIPlpiDelRows(SCIP_LPI *lpi, int firstrow, int lastrow)
Definition: lpi_clp.cpp:992
SCIP_RETCODE SCIPlpiGetBInvCol(SCIP_LPI *lpi, int c, SCIP_Real *coef, int *inds, int *ninds)
Definition: lpi_clp.cpp:3304
SCIP_RETCODE SCIPlpiGetBInvARow(SCIP_LPI *lpi, int r, const SCIP_Real *binvrow, SCIP_Real *coef, int *inds, int *ninds)
Definition: lpi_clp.cpp:3342
SCIP_RETCODE SCIPlpiSolveBarrier(SCIP_LPI *lpi, SCIP_Bool crossover)
Definition: lpi_clp.cpp:1985
SCIP_RETCODE SCIPlpiEndStrongbranch(SCIP_LPI *lpi)
Definition: lpi_clp.cpp:2046
SCIP_RETCODE SCIPlpiGetSides(SCIP_LPI *lpi, int firstrow, int lastrow, SCIP_Real *lhss, SCIP_Real *rhss)
Definition: lpi_clp.cpp:1766
SCIP_RETCODE SCIPlpiStrongbranchesInt(SCIP_LPI *lpi, int *cols, int ncols, SCIP_Real *psols, int itlim, SCIP_Real *down, SCIP_Real *up, SCIP_Bool *downvalid, SCIP_Bool *upvalid, int *iter)
Definition: lpi_clp.cpp:2378
SCIP_RETCODE SCIPlpiGetSol(SCIP_LPI *lpi, SCIP_Real *objval, SCIP_Real *primsol, SCIP_Real *dualsol, SCIP_Real *activity, SCIP_Real *redcost)
Definition: lpi_clp.cpp:2816
SCIP_RETCODE SCIPlpiGetObj(SCIP_LPI *lpi, int firstcol, int lastcol, SCIP_Real *vals)
Definition: lpi_clp.cpp:1708
SCIP_RETCODE SCIPlpiFreeState(SCIP_LPI *lpi, BMS_BLKMEM *blkmem, SCIP_LPISTATE **lpistate)
Definition: lpi_clp.cpp:3531
SCIP_Bool SCIPlpiIsPrimalInfeasible(SCIP_LPI *lpi)
Definition: lpi_clp.cpp:2530
SCIP_RETCODE SCIPlpiAddCols(SCIP_LPI *lpi, int ncols, const SCIP_Real *obj, const SCIP_Real *lb, const SCIP_Real *ub, char **colnames, int nnonz, const int *beg, const int *ind, const SCIP_Real *val)
Definition: lpi_clp.cpp:758
SCIP_RETCODE SCIPlpiGetIterations(SCIP_LPI *lpi, int *iterations)
Definition: lpi_clp.cpp:2949
SCIP_RETCODE SCIPlpiGetBasisInd(SCIP_LPI *lpi, int *bind)
Definition: lpi_clp.cpp:3217
SCIP_RETCODE SCIPlpiCreate(SCIP_LPI **lpi, SCIP_MESSAGEHDLR *messagehdlr, const char *name, SCIP_OBJSEN objsen)
Definition: lpi_clp.cpp:531
SCIP_RETCODE SCIPlpiChgObj(SCIP_LPI *lpi, int ncols, const int *ind, const SCIP_Real *obj)
Definition: lpi_clp.cpp:1252
SCIP_RETCODE SCIPlpiInterrupt(SCIP_LPI *lpi, SCIP_Bool interrupt)
Definition: lpi_clp.cpp:3923
SCIP_RETCODE SCIPlpiDelCols(SCIP_LPI *lpi, int firstcol, int lastcol)
Definition: lpi_clp.cpp:837
SCIP_RETCODE SCIPlpiDelRowset(SCIP_LPI *lpi, int *dstat)
Definition: lpi_clp.cpp:1030
SCIP_RETCODE SCIPlpiGetState(SCIP_LPI *lpi, BMS_BLKMEM *blkmem, SCIP_LPISTATE **lpistate)
Definition: lpi_clp.cpp:3417
SCIP_Longint SCIPcalcGreComDiv(SCIP_Longint val1, SCIP_Longint val2)
Definition: misc.c:9124
SCIP_Bool SCIPrealToRational(SCIP_Real val, SCIP_Real mindelta, SCIP_Real maxdelta, SCIP_Longint maxdnom, SCIP_Longint *numerator, SCIP_Longint *denominator)
Definition: misc.c:9397
SCIP_Longint SCIPcolGetStrongbranchNode(SCIP_COL *col)
Definition: lp.c:17206
SCIP_BOUNDTYPE SCIPboundtypeOpposite(SCIP_BOUNDTYPE boundtype)
Definition: lp.c:17236
SCIP_Real SCIPintervalGetInf(SCIP_INTERVAL interval)
Definition: intervalarith.c:405
void SCIPintervalSub(SCIP_Real infinity, SCIP_INTERVAL *resultant, SCIP_INTERVAL operand1, SCIP_INTERVAL operand2)
Definition: intervalarith.c:797
void SCIPintervalSet(SCIP_INTERVAL *resultant, SCIP_Real value)
Definition: intervalarith.c:421
void SCIPintervalSetBounds(SCIP_INTERVAL *resultant, SCIP_Real inf, SCIP_Real sup)
Definition: intervalarith.c:433
void SCIPintervalMul(SCIP_Real infinity, SCIP_INTERVAL *resultant, SCIP_INTERVAL operand1, SCIP_INTERVAL operand2)
Definition: intervalarith.c:976
void SCIPintervalAdd(SCIP_Real infinity, SCIP_INTERVAL *resultant, SCIP_INTERVAL operand1, SCIP_INTERVAL operand2)
Definition: intervalarith.c:690
SCIP_Real SCIProwGetOrthogonality(SCIP_ROW *row1, SCIP_ROW *row2, char orthofunc)
Definition: lp.c:7786
SCIP_Real SCIProwGetScalarProduct(SCIP_ROW *row1, SCIP_ROW *row2)
Definition: lp.c:7006
SCIP_Real SCIProwGetParallelism(SCIP_ROW *row1, SCIP_ROW *row2, char orthofunc)
Definition: lp.c:7722
SCIP_CONSHDLR * SCIProwGetOriginConshdlr(SCIP_ROW *row)
Definition: lp.c:17489
SCIP_Longint SCIProwGetNLPsAfterCreation(SCIP_ROW *row)
Definition: lp.c:17588
void SCIPsortPtrRealInt(void **ptrarray, SCIP_Real *realarray, int *intarray, SCIP_DECL_SORTPTRCOMP((*ptrcomp)), int len)
void SCIPsortIntPtrIntReal(int *intarray1, void **ptrarray, int *intarray2, SCIP_Real *realarray, int len)
interval arithmetics for provable bounds
static SCIP_RETCODE lpFlushDelRows(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_SET *set)
Definition: lp.c:8177
SCIP_RETCODE SCIPlpCleanupNew(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_EVENTQUEUE *eventqueue, SCIP_EVENTFILTER *eventfilter, SCIP_Bool root)
Definition: lp.c:15884
static void getObjvalDeltaObj(SCIP_SET *set, SCIP_Real oldobj, SCIP_Real newobj, SCIP_Real lb, SCIP_Real ub, SCIP_Real *deltaval, int *deltainf)
Definition: lp.c:13443
static SCIP_RETCODE lpSetObjlim(SCIP_LP *lp, SCIP_SET *set, SCIP_PROB *prob, SCIP_Real objlim, SCIP_Bool *success)
Definition: lp.c:2654
static SCIP_RETCODE insertColChgcols(SCIP_COL *col, SCIP_SET *set, SCIP_LP *lp)
Definition: lp.c:3617
SCIP_Real SCIProwGetRelaxEfficacy(SCIP_ROW *row, SCIP_SET *set, SCIP_STAT *stat)
Definition: lp.c:6922
SCIP_RETCODE SCIPcolChgUb(SCIP_COL *col, SCIP_SET *set, SCIP_LP *lp, SCIP_Real newub)
Definition: lp.c:3800
SCIP_Real SCIProwGetLPFeasibility(SCIP_ROW *row, SCIP_SET *set, SCIP_STAT *stat, SCIP_LP *lp)
Definition: lp.c:6252
SCIP_Real SCIPcolCalcRedcost(SCIP_COL *col, SCIP_Real *dualsol)
Definition: lp.c:3845
SCIP_RETCODE SCIPlpGetBInvRow(SCIP_LP *lp, int r, SCIP_Real *coef, int *inds, int *ninds)
Definition: lp.c:9849
static SCIP_RETCODE lpSetRefactorInterval(SCIP_LP *lp, int refactor, SCIP_Bool *success)
Definition: lp.c:3250
SCIP_Real SCIProwGetNLPFeasibility(SCIP_ROW *row, SCIP_SET *set, SCIP_STAT *stat)
Definition: lp.c:6334
SCIP_RETCODE SCIPcolFree(SCIP_COL **col, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_LP *lp)
Definition: lp.c:3375
static SCIP_RETCODE lpSolveStable(SCIP_LP *lp, SCIP_SET *set, SCIP_MESSAGEHDLR *messagehdlr, SCIP_STAT *stat, SCIP_PROB *prob, SCIP_LPALGO lpalgo, int itlim, int harditlim, SCIP_Bool resolve, int fastmip, SCIP_Bool tightprimfeastol, SCIP_Bool tightdualfeastol, SCIP_Bool fromscratch, int scaling, SCIP_Bool keepsol, SCIP_Bool *timelimit, SCIP_Bool *lperror)
Definition: lp.c:11589
SCIP_Real SCIPlpGetModifiedProvedPseudoObjval(SCIP_LP *lp, SCIP_SET *set, SCIP_VAR *var, SCIP_Real oldbound, SCIP_Real newbound, SCIP_BOUNDTYPE boundtype)
Definition: lp.c:13385
SCIP_RETCODE SCIPlpFreeState(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_LPISTATE **lpistate)
Definition: lp.c:10099
SCIP_Real SCIProwGetPseudoFeasibility(SCIP_ROW *row, SCIP_SET *set, SCIP_STAT *stat)
Definition: lp.c:6448
SCIP_RETCODE SCIPlpGetBInvCol(SCIP_LP *lp, int c, SCIP_Real *coef, int *inds, int *ninds)
Definition: lp.c:9871
SCIP_RETCODE SCIPcolChgLb(SCIP_COL *col, SCIP_SET *set, SCIP_LP *lp, SCIP_Real newlb)
Definition: lp.c:3755
static SCIP_RETCODE lpSetTiming(SCIP_LP *lp, SCIP_CLOCKTYPE timing, SCIP_Bool enabled, SCIP_Bool *success)
Definition: lp.c:3163
static SCIP_RETCODE lpLexDualSimplex(SCIP_LP *lp, SCIP_SET *set, SCIP_STAT *stat, SCIP_Bool resolve, SCIP_Bool keepsol, SCIP_Bool *lperror)
Definition: lp.c:10669
static void rowDelNorms(SCIP_ROW *row, SCIP_SET *set, SCIP_COL *col, SCIP_Real val, SCIP_Bool forcenormupdate, SCIP_Bool updateindex, SCIP_Bool updateval)
Definition: lp.c:1986
SCIP_RETCODE SCIProwChgCoef(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_LP *lp, SCIP_COL *col, SCIP_Real val)
Definition: lp.c:5474
static SCIP_RETCODE lpSetFromscratch(SCIP_LP *lp, SCIP_Bool fromscratch, SCIP_Bool *success)
Definition: lp.c:2833
static SCIP_RETCODE ensureLpicolsSize(SCIP_LP *lp, SCIP_SET *set, int num)
Definition: lp.c:215
SCIP_Real SCIPcolCalcFarkasCoef(SCIP_COL *col, SCIP_Real *dualfarkas)
Definition: lp.c:4028
static SCIP_RETCODE lpSetFastmip(SCIP_LP *lp, int fastmip, SCIP_Bool *success)
Definition: lp.c:2858
SCIP_RETCODE SCIPlpGetNorms(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_LPINORMS **lpinorms)
Definition: lp.c:10132
static SCIP_RETCODE lpSetRealpar(SCIP_LP *lp, SCIP_LPPARAM lpparam, SCIP_Real value, SCIP_Bool *success)
Definition: lp.c:2554
static SCIP_RETCODE lpCopyIntegrality(SCIP_LP *lp, SCIP_SET *set)
Definition: lp.c:8621
static SCIP_RETCODE lpStoreSolVals(SCIP_LP *lp, SCIP_STAT *stat, BMS_BLKMEM *blkmem)
Definition: lp.c:377
SCIP_RETCODE SCIPlpGetState(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_LPISTATE **lpistate)
Definition: lp.c:10032
void SCIPlpRecalculateObjSqrNorm(SCIP_SET *set, SCIP_LP *lp)
Definition: lp.c:17709
static void lpUpdateObjNorms(SCIP_LP *lp, SCIP_SET *set, SCIP_Real oldobj, SCIP_Real newobj)
Definition: lp.c:3660
static SCIP_RETCODE lpRemoveObsoleteRows(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_EVENTQUEUE *eventqueue, SCIP_EVENTFILTER *eventfilter, int firstrow)
Definition: lp.c:15608
SCIP_Real SCIProwGetSolFeasibility(SCIP_ROW *row, SCIP_SET *set, SCIP_STAT *stat, SCIP_SOL *sol)
Definition: lp.c:6506
void SCIProwRecalcPseudoActivity(SCIP_ROW *row, SCIP_STAT *stat)
Definition: lp.c:6393
SCIP_RETCODE SCIProwEnsureSize(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_SET *set, int num)
Definition: lp.c:630
SCIP_Bool SCIPlpIsFeasPositive(SCIP_LP *lp, SCIP_Real val)
Definition: lp.c:18948
SCIP_Bool SCIPlpIsFeasGT(SCIP_SET *set, SCIP_LP *lp, SCIP_Real val1, SCIP_Real val2)
Definition: lp.c:18897
SCIP_RETCODE SCIPlpIsInfeasibilityProved(SCIP_LP *lp, SCIP_SET *set, SCIP_Bool *proved)
Definition: lp.c:16538
SCIP_Real SCIProwGetRelaxFeasibility(SCIP_ROW *row, SCIP_SET *set, SCIP_STAT *stat)
Definition: lp.c:6272
SCIP_RETCODE SCIPlpAddCol(SCIP_LP *lp, SCIP_SET *set, SCIP_COL *col, int depth)
Definition: lp.c:9449
SCIP_Real SCIPlpGetLooseObjval(SCIP_LP *lp, SCIP_SET *set, SCIP_PROB *prob)
Definition: lp.c:13171
SCIP_RETCODE SCIPlpSetState(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_PROB *prob, SCIP_EVENTQUEUE *eventqueue, SCIP_LPISTATE *lpistate, SCIP_Bool wasprimfeas, SCIP_Bool wasprimchecked, SCIP_Bool wasdualfeas, SCIP_Bool wasdualchecked)
Definition: lp.c:10056
static SCIP_RETCODE colDelCoefPos(SCIP_COL *col, SCIP_SET *set, SCIP_LP *lp, int pos)
Definition: lp.c:1820
static void rowCalcActivityBounds(SCIP_ROW *row, SCIP_SET *set, SCIP_STAT *stat)
Definition: lp.c:6524
static SCIP_RETCODE lpUpdateVarProved(SCIP_LP *lp, SCIP_SET *set, SCIP_VAR *var, SCIP_Real oldobj, SCIP_Real oldlb, SCIP_Real oldub, SCIP_Real newobj, SCIP_Real newlb, SCIP_Real newub)
Definition: lp.c:13732
SCIP_Real SCIProwGetMaxActivity(SCIP_ROW *row, SCIP_SET *set, SCIP_STAT *stat)
Definition: lp.c:6617
SCIP_RETCODE SCIProwMakeIntegral(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_STAT *stat, SCIP_LP *lp, SCIP_Real mindelta, SCIP_Real maxdelta, SCIP_Longint maxdnom, SCIP_Real maxscale, SCIP_Bool usecontvars, SCIP_Bool *success)
Definition: lp.c:5979
static SCIP_RETCODE lpSetPresolving(SCIP_LP *lp, SCIP_Bool presolving, SCIP_Bool *success)
Definition: lp.c:2939
SCIP_RETCODE SCIPlpRemoveNewObsoletes(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_EVENTQUEUE *eventqueue, SCIP_EVENTFILTER *eventfilter)
Definition: lp.c:15684
SCIP_Bool SCIProwIsLPEfficacious(SCIP_ROW *row, SCIP_SET *set, SCIP_STAT *stat, SCIP_LP *lp, SCIP_Bool root)
Definition: lp.c:6847
SCIP_Real SCIProwGetSolEfficacy(SCIP_ROW *row, SCIP_SET *set, SCIP_STAT *stat, SCIP_SOL *sol)
Definition: lp.c:6863
static int colSearchCoefPart(SCIP_COL *col, const SCIP_ROW *row, int minpos, int maxpos)
Definition: lp.c:1102
static int rowSearchCoefPart(SCIP_ROW *row, const SCIP_COL *col, int minpos, int maxpos)
Definition: lp.c:1177
SCIP_RETCODE SCIPlpFlush(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_PROB *prob, SCIP_EVENTQUEUE *eventqueue)
Definition: lp.c:8669
static SCIP_RETCODE rowDelCoefPos(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_LP *lp, int pos)
Definition: lp.c:2185
SCIP_RETCODE SCIPlpUpdateVarLb(SCIP_LP *lp, SCIP_SET *set, SCIP_VAR *var, SCIP_Real oldlb, SCIP_Real newlb)
Definition: lp.c:13926
SCIP_RETCODE SCIProwAddConstant(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_EVENTQUEUE *eventqueue, SCIP_LP *lp, SCIP_Real addval)
Definition: lp.c:5638
static SCIP_RETCODE rowChgCoefPos(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_LP *lp, int pos, SCIP_Real val)
Definition: lp.c:2245
static SCIP_RETCODE rowEventCoefChanged(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_COL *col, SCIP_Real oldval, SCIP_Real newval)
Definition: lp.c:1467
static void recomputePseudoObjectiveValue(SCIP_LP *lp, SCIP_SET *set, SCIP_PROB *prob)
Definition: lp.c:822
void SCIPlpSetFeastol(SCIP_LP *lp, SCIP_SET *set, SCIP_Real newfeastol)
Definition: lp.c:10255
SCIP_RETCODE SCIPcolChgCoef(SCIP_COL *col, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_LP *lp, SCIP_ROW *row, SCIP_Real val)
Definition: lp.c:3511
static void adjustLPobjval(SCIP_LP *lp, SCIP_SET *set, SCIP_MESSAGEHDLR *messagehdlr)
Definition: lp.c:12005
static SCIP_RETCODE lpFlushAddRows(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue)
Definition: lp.c:8226
SCIP_Real SCIPlpGetModifiedPseudoObjval(SCIP_LP *lp, SCIP_SET *set, SCIP_PROB *prob, SCIP_VAR *var, SCIP_Real oldbound, SCIP_Real newbound, SCIP_BOUNDTYPE boundtype)
Definition: lp.c:13345
SCIP_Real SCIProwGetLPActivity(SCIP_ROW *row, SCIP_SET *set, SCIP_STAT *stat, SCIP_LP *lp)
Definition: lp.c:6222
void SCIProwMarkNotRemovableLocal(SCIP_ROW *row, SCIP_STAT *stat)
Definition: lp.c:7876
static SCIP_RETCODE lpSetPricing(SCIP_LP *lp, SCIP_PRICING pricing)
Definition: lp.c:3025
SCIP_RETCODE SCIPlpUpdateVarLbGlobal(SCIP_LP *lp, SCIP_SET *set, SCIP_VAR *var, SCIP_Real oldlb, SCIP_Real newlb)
Definition: lp.c:13899
static SCIP_RETCODE colRestoreSolVals(SCIP_COL *col, BMS_BLKMEM *blkmem, SCIP_Longint validlp, SCIP_Bool freebuffer)
Definition: lp.c:498
SCIP_RETCODE SCIPlpShrinkCols(SCIP_LP *lp, SCIP_SET *set, int newncols)
Definition: lp.c:9632
void SCIPlpStoreRootObjval(SCIP_LP *lp, SCIP_SET *set, SCIP_PROB *prob)
Definition: lp.c:13191
static SCIP_RETCODE lpSetPricingChar(SCIP_LP *lp, char pricingchar)
Definition: lp.c:3048
SCIP_RETCODE SCIProwCreate(SCIP_ROW **row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, const char *name, int len, SCIP_COL **cols, SCIP_Real *vals, SCIP_Real lhs, SCIP_Real rhs, SCIP_ROWORIGINTYPE origintype, void *origin, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool removable)
Definition: lp.c:5108
static SCIP_RETCODE colStoreSolVals(SCIP_COL *col, BMS_BLKMEM *blkmem)
Definition: lp.c:471
static SCIP_RETCODE rowAddCoef(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_LP *lp, SCIP_COL *col, SCIP_Real val, int linkpos)
Definition: lp.c:2044
static SCIP_RETCODE ensureSoldirectionSize(SCIP_LP *lp, int num)
Definition: lp.c:284
void SCIPlpRecomputeLocalAndGlobalPseudoObjval(SCIP_LP *lp, SCIP_SET *set, SCIP_PROB *prob)
Definition: lp.c:13215
static SCIP_RETCODE lpSetMarkowitz(SCIP_LP *lp, SCIP_Real threshhold, SCIP_Bool *success)
Definition: lp.c:3138
static SCIP_RETCODE lpCheckIntpar(SCIP_LP *lp, SCIP_LPPARAM lpparam, int value)
Definition: lp.c:2582
SCIP_RETCODE SCIPlpUpdateAddVar(SCIP_LP *lp, SCIP_SET *set, SCIP_VAR *var)
Definition: lp.c:14035
SCIP_RETCODE SCIPlpClear(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_EVENTFILTER *eventfilter)
Definition: lp.c:9770
static SCIP_RETCODE colEnsureSize(SCIP_COL *col, BMS_BLKMEM *blkmem, SCIP_SET *set, int num)
Definition: lp.c:350
static SCIP_RETCODE ensureChgcolsSize(SCIP_LP *lp, SCIP_SET *set, int num)
Definition: lp.c:169
SCIP_RETCODE SCIProwDelCoef(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_LP *lp, SCIP_COL *col)
Definition: lp.c:5428
static SCIP_RETCODE rowEventConstantChanged(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_Real oldval, SCIP_Real newval)
Definition: lp.c:1497
void SCIPcolInvalidateStrongbranchData(SCIP_COL *col, SCIP_SET *set, SCIP_STAT *stat, SCIP_LP *lp)
Definition: lp.c:4262
static SCIP_RETCODE lpSolve(SCIP_LP *lp, SCIP_SET *set, SCIP_MESSAGEHDLR *messagehdlr, SCIP_STAT *stat, SCIP_PROB *prob, SCIP_LPALGO lpalgo, int resolveitlim, int harditlim, SCIP_Bool needprimalray, SCIP_Bool needdualray, SCIP_Bool resolve, int fastmip, SCIP_Bool tightprimfeastol, SCIP_Bool tightdualfeastol, SCIP_Bool fromscratch, int scaling, SCIP_Bool keepsol, SCIP_Bool *lperror)
Definition: lp.c:12036
static int lpGetResolveItlim(SCIP_SET *set, SCIP_STAT *stat, int itlim)
Definition: lp.c:12404
SCIP_RETCODE SCIPlpSolveAndEval(SCIP_LP *lp, SCIP_SET *set, SCIP_MESSAGEHDLR *messagehdlr, BMS_BLKMEM *blkmem, SCIP_STAT *stat, SCIP_EVENTQUEUE *eventqueue, SCIP_EVENTFILTER *eventfilter, SCIP_PROB *prob, SCIP_Longint itlim, SCIP_Bool limitresolveiters, SCIP_Bool aging, SCIP_Bool keepsol, SCIP_Bool forcedlpsolve, SCIP_Bool *lperror)
Definition: lp.c:12424
SCIP_RETCODE SCIPcolGetStrongbranch(SCIP_COL *col, SCIP_Bool integral, SCIP_SET *set, SCIP_STAT *stat, SCIP_PROB *prob, SCIP_LP *lp, int itlim, SCIP_Bool updatecol, SCIP_Bool updatestat, SCIP_Real *down, SCIP_Real *up, SCIP_Bool *downvalid, SCIP_Bool *upvalid, SCIP_Bool *lperror)
Definition: lp.c:4297
static SCIP_RETCODE lpCheckRealpar(SCIP_LP *lp, SCIP_LPPARAM lpparam, SCIP_Real value)
Definition: lp.c:2618
SCIP_RETCODE SCIPcolDelCoef(SCIP_COL *col, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_LP *lp, SCIP_ROW *row)
Definition: lp.c:3466
static SCIP_Bool isIntegralScalar(SCIP_Real val, SCIP_Real scalar, SCIP_Real mindelta, SCIP_Real maxdelta, SCIP_Real *intval)
Definition: lp.c:4898
SCIP_Real SCIPlpGetObjval(SCIP_LP *lp, SCIP_SET *set, SCIP_PROB *prob)
Definition: lp.c:13132
static void computeLPBounds(SCIP_LP *lp, SCIP_SET *set, SCIP_COL *col, SCIP_Real lpiinf, SCIP_Real *lb, SCIP_Real *ub)
Definition: lp.c:7968
SCIP_RETCODE SCIPlpCleanupAll(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_EVENTQUEUE *eventqueue, SCIP_EVENTFILTER *eventfilter, SCIP_Bool root)
Definition: lp.c:15923
void SCIProwRecalcLPActivity(SCIP_ROW *row, SCIP_STAT *stat)
Definition: lp.c:6170
static SCIP_Bool isNewValueUnreliable(SCIP_SET *set, SCIP_Real newvalue, SCIP_Real oldvalue)
Definition: lp.c:3642
static SCIP_RETCODE provedBound(SCIP_LP *lp, SCIP_SET *set, SCIP_Bool usefarkas, SCIP_Real *bound)
Definition: lp.c:16414
SCIP_Longint SCIPcolGetStrongbranchLPAge(SCIP_COL *col, SCIP_STAT *stat)
Definition: lp.c:4737
static SCIP_RETCODE lpDelColset(SCIP_LP *lp, SCIP_SET *set, int *coldstat)
Definition: lp.c:15335
static SCIP_RETCODE lpRemoveObsoleteCols(SCIP_LP *lp, SCIP_SET *set, SCIP_STAT *stat, int firstcol)
Definition: lp.c:15532
static SCIP_RETCODE rowScale(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_STAT *stat, SCIP_LP *lp, SCIP_Real scaleval, SCIP_Bool integralcontvars, SCIP_Real minrounddelta, SCIP_Real maxrounddelta)
Definition: lp.c:4938
static SCIP_RETCODE ensureLazycolsSize(SCIP_LP *lp, SCIP_SET *set, int num)
Definition: lp.c:304
SCIP_Bool SCIPlpIsFeasGE(SCIP_SET *set, SCIP_LP *lp, SCIP_Real val1, SCIP_Real val2)
Definition: lp.c:18917
static SCIP_RETCODE ignoreInstability(SCIP_LP *lp, SCIP_SET *set, SCIP_MESSAGEHDLR *messagehdlr, SCIP_STAT *stat, SCIP_LPALGO lpalgo, SCIP_Bool *success)
Definition: lp.c:11560
SCIP_RETCODE SCIPlpGetProvedLowerbound(SCIP_LP *lp, SCIP_SET *set, SCIP_Real *bound)
Definition: lp.c:16524
SCIP_RETCODE SCIPcolChgObj(SCIP_COL *col, SCIP_SET *set, SCIP_LP *lp, SCIP_Real newobj)
Definition: lp.c:3696
SCIP_Real SCIProwGetLPSolCutoffDistance(SCIP_ROW *row, SCIP_SET *set, SCIP_STAT *stat, SCIP_SOL *sol, SCIP_LP *lp)
Definition: lp.c:6749
static SCIP_RETCODE lpSetRandomseed(SCIP_LP *lp, int randomseed, SCIP_Bool *success)
Definition: lp.c:3197
static SCIP_RETCODE rowRestoreSolVals(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_Longint validlp, SCIP_Bool freebuffer, SCIP_Bool infeasible)
Definition: lp.c:582
static SCIP_RETCODE ensureChgrowsSize(SCIP_LP *lp, SCIP_SET *set, int num)
Definition: lp.c:192
SCIP_Real SCIProwGetSolActivity(SCIP_ROW *row, SCIP_SET *set, SCIP_STAT *stat, SCIP_SOL *sol)
Definition: lp.c:6464
static SCIP_RETCODE lpSetScaling(SCIP_LP *lp, int scaling, SCIP_Bool *success)
Definition: lp.c:2889
static SCIP_RETCODE colChgCoefPos(SCIP_COL *col, SCIP_SET *set, SCIP_LP *lp, int pos, SCIP_Real val)
Definition: lp.c:1865
SCIP_RETCODE SCIPlpFree(SCIP_LP **lp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_EVENTFILTER *eventfilter)
Definition: lp.c:9369
static SCIP_RETCODE lpSetIntpar(SCIP_LP *lp, SCIP_LPPARAM lpparam, int value, SCIP_Bool *success)
Definition: lp.c:2515
SCIP_RETCODE SCIPlpFreeNorms(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_LPINORMS **lpinorms)
Definition: lp.c:10176
static SCIP_RETCODE lpBarrier(SCIP_LP *lp, SCIP_SET *set, SCIP_STAT *stat, SCIP_Bool crossover, SCIP_Bool keepsol, SCIP_Bool *lperror)
Definition: lp.c:11278
SCIP_RETCODE SCIProwAddCoef(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_LP *lp, SCIP_COL *col, SCIP_Real val)
Definition: lp.c:5407
SCIP_RETCODE SCIPlpGetBInvARow(SCIP_LP *lp, int r, SCIP_Real *binvrow, SCIP_Real *coef, int *inds, int *ninds)
Definition: lp.c:9897
SCIP_Bool SCIPlpIsFeasLT(SCIP_SET *set, SCIP_LP *lp, SCIP_Real val1, SCIP_Real val2)
Definition: lp.c:18857
static SCIP_RETCODE rowStoreSolVals(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_Bool infeasible)
Definition: lp.c:545
SCIP_RETCODE SCIProwIncCoef(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_LP *lp, SCIP_COL *col, SCIP_Real incval)
Definition: lp.c:5526
static SCIP_RETCODE lpUpdateVarColumnProved(SCIP_LP *lp, SCIP_SET *set, SCIP_VAR *var)
Definition: lp.c:14127
SCIP_RETCODE SCIPlpRemoveRedundantRows(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_EVENTQUEUE *eventqueue, SCIP_EVENTFILTER *eventfilter)
Definition: lp.c:15962
SCIP_Real SCIProwGetNLPEfficacy(SCIP_ROW *row, SCIP_SET *set, SCIP_STAT *stat)
Definition: lp.c:6962
SCIP_RETCODE SCIPlpSetNorms(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_LPINORMS *lpinorms)
Definition: lp.c:10156
SCIP_RETCODE SCIPlpComputeRelIntPoint(SCIP_SET *set, SCIP_MESSAGEHDLR *messagehdlr, SCIP_LP *lp, SCIP_PROB *prob, SCIP_Bool relaxrows, SCIP_Bool inclobjcutoff, SCIP_Real timelimit, int iterlimit, SCIP_Real *point, SCIP_Bool *success)
Definition: lp.c:18636
SCIP_RETCODE SCIPlpGetDualDegeneracy(SCIP_LP *lp, SCIP_SET *set, SCIP_STAT *stat, SCIP_Real *degeneracy, SCIP_Real *varconsratio)
Definition: lp.c:18708
static SCIP_RETCODE lpSetBoolpar(SCIP_LP *lp, SCIP_LPPARAM lpparam, SCIP_Bool value, SCIP_Bool *success)
Definition: lp.c:2542
static SCIP_RETCODE ensureColsSize(SCIP_LP *lp, SCIP_SET *set, int num)
Definition: lp.c:261
SCIP_Real SCIProwGetLPEfficacy(SCIP_ROW *row, SCIP_SET *set, SCIP_STAT *stat, SCIP_LP *lp)
Definition: lp.c:6806
SCIP_RETCODE SCIPlpGetSol(SCIP_LP *lp, SCIP_SET *set, SCIP_STAT *stat, SCIP_Bool *primalfeasible, SCIP_Bool *dualfeasible)
Definition: lp.c:14355
static void rowAddNorms(SCIP_ROW *row, SCIP_SET *set, SCIP_COL *col, SCIP_Real val, SCIP_Bool updateidxvals)
Definition: lp.c:1909
static void lpUpdateObjval(SCIP_LP *lp, SCIP_SET *set, SCIP_VAR *var, SCIP_Real deltaval, int deltainf, SCIP_Bool local, SCIP_Bool loose, SCIP_Bool global)
Definition: lp.c:13650
void SCIPcolGetStrongbranchLast(SCIP_COL *col, SCIP_Real *down, SCIP_Real *up, SCIP_Bool *downvalid, SCIP_Bool *upvalid, SCIP_Real *solval, SCIP_Real *lpobjval)
Definition: lp.c:4705
SCIP_RETCODE SCIPcolAddCoef(SCIP_COL *col, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_LP *lp, SCIP_ROW *row, SCIP_Real val)
Definition: lp.c:3445
static SCIP_RETCODE computeRelIntPoint(SCIP_LPI *lpi, SCIP_SET *set, SCIP_MESSAGEHDLR *messagehdlr, SCIP_LP *lp, SCIP_PROB *prob, SCIP_Bool relaxrows, SCIP_Bool inclobjcutoff, SCIP_Real timelimit, int iterlimit, SCIP_Real *point, SCIP_Bool *success)
Definition: lp.c:17934
SCIP_RETCODE SCIPcolIncCoef(SCIP_COL *col, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_LP *lp, SCIP_ROW *row, SCIP_Real incval)
Definition: lp.c:3562
SCIP_RETCODE SCIPlpGetDualfarkas(SCIP_LP *lp, SCIP_SET *set, SCIP_STAT *stat, SCIP_Bool forcedlpsolve, SCIP_Bool *valid)
Definition: lp.c:15059
void SCIProwPrint(SCIP_ROW *row, SCIP_MESSAGEHDLR *messagehdlr, FILE *file)
Definition: lp.c:5297
SCIP_RETCODE SCIPlpSetCutoffbound(SCIP_LP *lp, SCIP_SET *set, SCIP_PROB *prob, SCIP_Real cutoffbound)
Definition: lp.c:10200
SCIP_RETCODE SCIPlpRecordOldRowSideDive(SCIP_LP *lp, SCIP_ROW *row, SCIP_SIDETYPE sidetype)
Definition: lp.c:16324
static SCIP_RETCODE lpCleanupCols(SCIP_LP *lp, SCIP_SET *set, SCIP_STAT *stat, int firstcol)
Definition: lp.c:15746
static SCIP_RETCODE lpAlgorithm(SCIP_LP *lp, SCIP_SET *set, SCIP_STAT *stat, SCIP_LPALGO lpalgo, SCIP_Bool resolve, SCIP_Bool keepsol, SCIP_Bool instable, SCIP_Bool *timelimit, SCIP_Bool *lperror)
Definition: lp.c:11415
SCIP_Real SCIPcolGetFeasibility(SCIP_COL *col, SCIP_SET *set, SCIP_STAT *stat, SCIP_LP *lp)
Definition: lp.c:3974
SCIP_RETCODE SCIPlpShrinkRows(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_EVENTFILTER *eventfilter, int newnrows)
Definition: lp.c:9704
SCIP_Bool SCIProwIsRedundant(SCIP_ROW *row, SCIP_SET *set, SCIP_STAT *stat)
Definition: lp.c:6638
void SCIPlpStartStrongbranchProbing(SCIP_LP *lp)
Definition: lp.c:16378
static SCIP_RETCODE lpSetRowrepswitch(SCIP_LP *lp, SCIP_Real rowrepswitch, SCIP_Bool *success)
Definition: lp.c:2964
SCIP_RETCODE SCIPlpGetIterations(SCIP_LP *lp, int *iterations)
Definition: lp.c:15260
static void recomputeLooseObjectiveValue(SCIP_LP *lp, SCIP_SET *set, SCIP_PROB *prob)
Definition: lp.c:780
SCIP_RETCODE SCIProwChgConstant(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_EVENTQUEUE *eventqueue, SCIP_LP *lp, SCIP_Real constant)
Definition: lp.c:5583
static SCIP_RETCODE lpSetFeastol(SCIP_LP *lp, SCIP_Real feastol, SCIP_Bool *success)
Definition: lp.c:2703
SCIP_Bool SCIProwIsSolEfficacious(SCIP_ROW *row, SCIP_SET *set, SCIP_STAT *stat, SCIP_SOL *sol, SCIP_Bool root)
Definition: lp.c:6906
static SCIP_RETCODE lpUpdateVarColumn(SCIP_LP *lp, SCIP_SET *set, SCIP_VAR *var)
Definition: lp.c:14080
SCIP_RETCODE SCIPlpUpdateDelVar(SCIP_LP *lp, SCIP_SET *set, SCIP_VAR *var)
Definition: lp.c:14056
SCIP_RETCODE SCIPlpGetBInvACol(SCIP_LP *lp, int c, SCIP_Real *coef, int *inds, int *ninds)
Definition: lp.c:9922
static SCIP_RETCODE lpSetThreads(SCIP_LP *lp, int threads, SCIP_Bool *success)
Definition: lp.c:2914
SCIP_RETCODE SCIPlpRemoveAllObsoletes(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_EVENTQUEUE *eventqueue, SCIP_EVENTFILTER *eventfilter)
Definition: lp.c:15715
static SCIP_RETCODE lpUpdateVarLooseProved(SCIP_LP *lp, SCIP_SET *set, SCIP_VAR *var)
Definition: lp.c:14259
SCIP_RETCODE SCIProwCatchEvent(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTTYPE eventtype, SCIP_EVENTHDLR *eventhdlr, SCIP_EVENTDATA *eventdata, int *filterpos)
Definition: lp.c:7831
SCIP_RETCODE colLink(SCIP_COL *col, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_LP *lp)
Definition: lp.c:2353
SCIP_RETCODE SCIProwFree(SCIP_ROW **row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_LP *lp)
Definition: lp.c:5257
static SCIP_Real getFiniteLooseObjval(SCIP_LP *lp, SCIP_SET *set, SCIP_PROB *prob)
Definition: lp.c:906
SCIP_Real SCIPcolGetFarkasValue(SCIP_COL *col, SCIP_STAT *stat, SCIP_LP *lp)
Definition: lp.c:4159
static SCIP_RETCODE lpDualSimplex(SCIP_LP *lp, SCIP_SET *set, SCIP_STAT *stat, SCIP_Bool resolve, SCIP_Bool keepsol, SCIP_Bool instable, SCIP_Bool *lperror)
Definition: lp.c:10478
static SCIP_RETCODE lpUpdateVarLoose(SCIP_LP *lp, SCIP_SET *set, SCIP_VAR *var)
Definition: lp.c:14214
static void getObjvalDeltaUb(SCIP_SET *set, SCIP_Real obj, SCIP_Real oldub, SCIP_Real newub, SCIP_Real *deltaval, int *deltainf)
Definition: lp.c:13612
static SCIP_RETCODE lpRestoreSolVals(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_Longint validlp)
Definition: lp.c:411
static SCIP_RETCODE rowSideChanged(SCIP_ROW *row, SCIP_SET *set, SCIP_LP *lp, SCIP_SIDETYPE sidetype)
Definition: lp.c:2301
static SCIP_Real colCalcInternalFarkasCoef(SCIP_COL *col)
Definition: lp.c:4080
SCIP_RETCODE colUnlink(SCIP_COL *col, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_LP *lp)
Definition: lp.c:2396
SCIP_RETCODE SCIPlpCreate(SCIP_LP **lp, SCIP_SET *set, SCIP_MESSAGEHDLR *messagehdlr, SCIP_STAT *stat, const char *name)
Definition: lp.c:9077
SCIP_RETCODE SCIPlpUpdateVarUbGlobal(SCIP_LP *lp, SCIP_SET *set, SCIP_VAR *var, SCIP_Real oldub, SCIP_Real newub)
Definition: lp.c:13967
static SCIP_RETCODE lpFlushAndSolve(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_MESSAGEHDLR *messagehdlr, SCIP_STAT *stat, SCIP_PROB *prob, SCIP_EVENTQUEUE *eventqueue, int resolveitlim, int harditlim, SCIP_Bool needprimalray, SCIP_Bool needdualray, int fastmip, SCIP_Bool tightprimfeastol, SCIP_Bool tightdualfeastol, SCIP_Bool fromscratch, int scaling, SCIP_Bool keepsol, SCIP_Bool *lperror)
Definition: lp.c:12225
SCIP_RETCODE SCIPlpReset(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_PROB *prob, SCIP_STAT *stat, SCIP_EVENTQUEUE *eventqueue, SCIP_EVENTFILTER *eventfilter)
Definition: lp.c:9414
static SCIP_RETCODE lpCheckBoolpar(SCIP_LP *lp, SCIP_LPPARAM lpparam, SCIP_Bool value)
Definition: lp.c:2607
SCIP_Real SCIPcolGetRedcost(SCIP_COL *col, SCIP_STAT *stat, SCIP_LP *lp)
Definition: lp.c:3950
SCIP_RETCODE SCIProwDropEvent(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTTYPE eventtype, SCIP_EVENTHDLR *eventhdlr, SCIP_EVENTDATA *eventdata, int filterpos)
Definition: lp.c:7855
static SCIP_RETCODE colAddCoef(SCIP_COL *col, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_LP *lp, SCIP_ROW *row, SCIP_Real val, int linkpos)
Definition: lp.c:1699
SCIP_RETCODE SCIPcolCreate(SCIP_COL **col, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_VAR *var, int len, SCIP_ROW **rows, SCIP_Real *vals, SCIP_Bool removable)
Definition: lp.c:3277
SCIP_RETCODE SCIPlpUpdateVarUb(SCIP_LP *lp, SCIP_SET *set, SCIP_VAR *var, SCIP_Real oldub, SCIP_Real newub)
Definition: lp.c:13994
static SCIP_RETCODE lpSetConditionLimit(SCIP_LP *lp, SCIP_Real condlimit, SCIP_Bool *success)
Definition: lp.c:3113
SCIP_RETCODE SCIPlpUpdateVarObj(SCIP_LP *lp, SCIP_SET *set, SCIP_VAR *var, SCIP_Real oldobj, SCIP_Real newobj)
Definition: lp.c:13845
static void lpNumericalTroubleMessage(SCIP_MESSAGEHDLR *messagehdlr, SCIP_SET *set, SCIP_STAT *stat, SCIP_VERBLEVEL verblevel, const char *formatstr,...)
Definition: lp.c:11507
SCIP_Real SCIPcolGetFarkasCoef(SCIP_COL *col, SCIP_STAT *stat, SCIP_LP *lp)
Definition: lp.c:4133
SCIP_RETCODE SCIPlpUpdateVarLoose(SCIP_LP *lp, SCIP_SET *set, SCIP_VAR *var)
Definition: lp.c:14316
SCIP_Real SCIPlpGetGlobalPseudoObjval(SCIP_LP *lp, SCIP_SET *set, SCIP_PROB *prob)
Definition: lp.c:13283
static SCIP_RETCODE reallocDiveChgSideArrays(SCIP_LP *lp, int minsize, SCIP_Real growfact)
Definition: lp.c:9031
SCIP_RETCODE SCIPlpAddRow(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_EVENTFILTER *eventfilter, SCIP_ROW *row, int depth)
Definition: lp.c:9508
SCIP_RETCODE SCIPlpWriteMip(SCIP_LP *lp, SCIP_SET *set, SCIP_MESSAGEHDLR *messagehdlr, const char *fname, SCIP_Bool genericnames, SCIP_Bool origobj, SCIP_OBJSENSE objsense, SCIP_Real objscale, SCIP_Real objoffset, SCIP_Bool lazyconss)
Definition: lp.c:16575
static void getObjvalDeltaLb(SCIP_SET *set, SCIP_Real obj, SCIP_Real oldlb, SCIP_Real newlb, SCIP_Real *deltaval, int *deltainf)
Definition: lp.c:13574
SCIP_RETCODE SCIPlpStartDive(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat)
Definition: lp.c:16036
SCIP_Bool SCIPlpIsFeasNegative(SCIP_LP *lp, SCIP_Real val)
Definition: lp.c:18959
SCIP_RETCODE SCIPlpEndDive(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_MESSAGEHDLR *messagehdlr, SCIP_STAT *stat, SCIP_EVENTQUEUE *eventqueue, SCIP_EVENTFILTER *eventfilter, SCIP_PROB *prob, SCIP_VAR **vars, int nvars)
Definition: lp.c:16142
static SCIP_RETCODE lpSetBarrierconvtol(SCIP_LP *lp, SCIP_Real barrierconvtol, SCIP_Bool *success)
Definition: lp.c:2789
SCIP_RETCODE SCIProwChgRhs(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_LP *lp, SCIP_Real rhs)
Definition: lp.c:5696
static SCIP_RETCODE rowEventSideChanged(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_SIDETYPE side, SCIP_Real oldval, SCIP_Real newval)
Definition: lp.c:1525
SCIP_RETCODE SCIPlpGetUnboundedSol(SCIP_LP *lp, SCIP_SET *set, SCIP_STAT *stat, SCIP_Bool *primalfeasible, SCIP_Bool *rayfeasible)
Definition: lp.c:14672
static SCIP_RETCODE lpSetDualfeastol(SCIP_LP *lp, SCIP_Real dualfeastol, SCIP_Bool *success)
Definition: lp.c:2746
SCIP_RETCODE SCIProwCalcIntegralScalar(SCIP_ROW *row, SCIP_SET *set, SCIP_Real mindelta, SCIP_Real maxdelta, SCIP_Longint maxdnom, SCIP_Real maxscale, SCIP_Bool usecontvars, SCIP_Real *intscalar, SCIP_Bool *success)
Definition: lp.c:5745
SCIP_Bool SCIPlpIsFeasEQ(SCIP_SET *set, SCIP_LP *lp, SCIP_Real val1, SCIP_Real val2)
Definition: lp.c:18837
SCIP_Real SCIProwGetPseudoActivity(SCIP_ROW *row, SCIP_SET *set, SCIP_STAT *stat)
Definition: lp.c:6420
static SCIP_RETCODE lpSetIterationLimit(SCIP_LP *lp, int itlim)
Definition: lp.c:2989
static SCIP_RETCODE ensureRowsSize(SCIP_LP *lp, SCIP_SET *set, int num)
Definition: lp.c:327
static SCIP_Real getFinitePseudoObjval(SCIP_LP *lp, SCIP_SET *set, SCIP_PROB *prob)
Definition: lp.c:928
static SCIP_RETCODE allocDiveChgSideArrays(SCIP_LP *lp, int initsize)
Definition: lp.c:9009
void SCIPlpSetRootLPIsRelax(SCIP_LP *lp, SCIP_Bool isrelax)
Definition: lp.c:17752
static SCIP_RETCODE ensureLpirowsSize(SCIP_LP *lp, SCIP_SET *set, int num)
Definition: lp.c:238
SCIP_RETCODE SCIProwChgLhs(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_LP *lp, SCIP_Real lhs)
Definition: lp.c:5664
void SCIPcolMarkNotRemovableLocal(SCIP_COL *col, SCIP_STAT *stat)
Definition: lp.c:4749
static SCIP_RETCODE updateLazyBounds(SCIP_LP *lp, SCIP_SET *set)
Definition: lp.c:12342
SCIP_RETCODE rowLink(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_LP *lp)
Definition: lp.c:2434
SCIP_Real SCIProwGetMinActivity(SCIP_ROW *row, SCIP_SET *set, SCIP_STAT *stat)
Definition: lp.c:6596
void SCIPcolSetStrongbranchData(SCIP_COL *col, SCIP_SET *set, SCIP_STAT *stat, SCIP_LP *lp, SCIP_Real lpobjval, SCIP_Real primsol, SCIP_Real sbdown, SCIP_Real sbup, SCIP_Bool sbdownvalid, SCIP_Bool sbupvalid, SCIP_Longint iter, int itlim)
Definition: lp.c:4208
SCIP_Bool SCIPlpIsFeasLE(SCIP_SET *set, SCIP_LP *lp, SCIP_Real val1, SCIP_Real val2)
Definition: lp.c:18877
SCIP_RETCODE SCIPlpGetPrimalRay(SCIP_LP *lp, SCIP_SET *set, SCIP_Real *ray)
Definition: lp.c:14998
static SCIP_RETCODE lpSetSolutionPolishing(SCIP_LP *lp, SCIP_Bool polishing, SCIP_Bool *success)
Definition: lp.c:3227
static SCIP_RETCODE lpPrimalSimplex(SCIP_LP *lp, SCIP_SET *set, SCIP_STAT *stat, SCIP_Bool resolve, SCIP_Bool keepsol, SCIP_Bool instable, SCIP_Bool *lperror)
Definition: lp.c:10320
SCIP_Real SCIProwGetObjParallelism(SCIP_ROW *row, SCIP_SET *set, SCIP_LP *lp)
Definition: lp.c:7798
static void recomputeGlbPseudoObjectiveValue(SCIP_LP *lp, SCIP_SET *set, SCIP_PROB *prob)
Definition: lp.c:864
SCIP_RETCODE SCIPlpSumRows(SCIP_LP *lp, SCIP_SET *set, SCIP_PROB *prob, SCIP_Real *weights, SCIP_REALARRAY *sumcoef, SCIP_Real *sumlhs, SCIP_Real *sumrhs)
Definition: lp.c:9946
SCIP_RETCODE SCIPcolGetStrongbranches(SCIP_COL **cols, int ncols, SCIP_Bool integral, SCIP_SET *set, SCIP_STAT *stat, SCIP_PROB *prob, SCIP_LP *lp, int itlim, SCIP_Real *down, SCIP_Real *up, SCIP_Bool *downvalid, SCIP_Bool *upvalid, SCIP_Bool *lperror)
Definition: lp.c:4482
static SCIP_RETCODE lpCleanupRows(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_EVENTQUEUE *eventqueue, SCIP_EVENTFILTER *eventfilter, int firstrow)
Definition: lp.c:15813
SCIP_Real SCIPlpGetPseudoObjval(SCIP_LP *lp, SCIP_SET *set, SCIP_PROB *prob)
Definition: lp.c:13315
static SCIP_RETCODE lpDelRowset(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_EVENTFILTER *eventfilter, int *rowdstat)
Definition: lp.c:15434
static int SCIProwGetDiscreteScalarProduct(SCIP_ROW *row1, SCIP_ROW *row2)
Definition: lp.c:7363
SCIP_RETCODE SCIPlpUpdateVarColumn(SCIP_LP *lp, SCIP_SET *set, SCIP_VAR *var)
Definition: lp.c:14192
SCIP_RETCODE SCIProwRelease(SCIP_ROW **row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_LP *lp)
Definition: lp.c:5350
static SCIP_RETCODE lpFlushAddCols(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue)
Definition: lp.c:8003
void SCIPcolPrint(SCIP_COL *col, SCIP_MESSAGEHDLR *messagehdlr, FILE *file)
Definition: lp.c:3405
internal methods for LP management
interface methods for specific LP solvers
#define BMSduplicateBlockMemoryArray(mem, ptr, source, num)
Definition: memory.h:462
#define BMSfreeBlockMemoryArrayNull(mem, ptr, num)
Definition: memory.h:468
#define BMSreallocBlockMemoryArray(mem, ptr, oldnum, newnum)
Definition: memory.h:458
void SCIPmessageFPrintInfo(SCIP_MESSAGEHDLR *messagehdlr, FILE *file, const char *formatstr,...)
Definition: message.c:618
void SCIPmessageVFPrintInfo(SCIP_MESSAGEHDLR *messagehdlr, FILE *file, const char *formatstr, va_list ap)
Definition: message.c:633
void SCIPmessagePrintInfo(SCIP_MESSAGEHDLR *messagehdlr, const char *formatstr,...)
Definition: message.c:594
void SCIPmessagePrintWarning(SCIP_MESSAGEHDLR *messagehdlr, const char *formatstr,...)
Definition: message.c:427
void SCIPmessagePrintVerbInfo(SCIP_MESSAGEHDLR *messagehdlr, SCIP_VERBLEVEL verblevel, SCIP_VERBLEVEL msgverblevel, const char *formatstr,...)
Definition: message.c:678
SCIP_RETCODE SCIPrealarrayExtend(SCIP_REALARRAY *realarray, int arraygrowinit, SCIP_Real arraygrowfac, int minidx, int maxidx)
Definition: misc.c:4091
SCIP_RETCODE SCIPrealarrayIncVal(SCIP_REALARRAY *realarray, int arraygrowinit, SCIP_Real arraygrowfac, int idx, SCIP_Real incval)
Definition: misc.c:4367
internal miscellaneous methods
SCIP_Bool SCIPprobAllColsInLP(SCIP_PROB *prob, SCIP_SET *set, SCIP_LP *lp)
Definition: prob.c:2358
internal methods for storing and manipulating the main problem
public methods for LP management
public methods for message output
public data structures and miscellaneous methods
methods for sorting joint arrays of various types
public methods for problem variables
SCIP_Bool SCIPsetIsDualfeasZero(SCIP_SET *set, SCIP_Real val)
Definition: set.c:6918
SCIP_Bool SCIPsetIsEfficacious(SCIP_SET *set, SCIP_Bool root, SCIP_Real efficacy)
Definition: set.c:7061
SCIP_Bool SCIPsetIsFeasPositive(SCIP_SET *set, SCIP_Real val)
Definition: set.c:6718
SCIP_Bool SCIPsetIsGE(SCIP_SET *set, SCIP_Real val1, SCIP_Real val2)
Definition: set.c:6293
SCIP_RETCODE SCIPsetGetCharParam(SCIP_SET *set, const char *name, char *value)
Definition: set.c:3179
SCIP_Bool SCIPsetIsFeasNegative(SCIP_SET *set, SCIP_Real val)
Definition: set.c:6729
SCIP_Bool SCIPsetIsDualfeasLT(SCIP_SET *set, SCIP_Real val1, SCIP_Real val2)
Definition: set.c:6830
SCIP_Bool SCIPsetIsFeasGT(SCIP_SET *set, SCIP_Real val1, SCIP_Real val2)
Definition: set.c:6663
SCIP_Bool SCIPsetIsFeasLE(SCIP_SET *set, SCIP_Real val1, SCIP_Real val2)
Definition: set.c:6641
SCIP_Bool SCIPsetIsFeasEQ(SCIP_SET *set, SCIP_Real val1, SCIP_Real val2)
Definition: set.c:6597
SCIP_Bool SCIPsetIsLE(SCIP_SET *set, SCIP_Real val1, SCIP_Real val2)
Definition: set.c:6257
SCIP_Bool SCIPsetIsSumLE(SCIP_SET *set, SCIP_Real val1, SCIP_Real val2)
Definition: set.c:6466
SCIP_Bool SCIPsetIsDualfeasNegative(SCIP_SET *set, SCIP_Real val)
Definition: set.c:6940
SCIP_Bool SCIPsetIsSumGE(SCIP_SET *set, SCIP_Real val1, SCIP_Real val2)
Definition: set.c:6502
SCIP_Bool SCIPsetIsEQ(SCIP_SET *set, SCIP_Real val1, SCIP_Real val2)
Definition: set.c:6221
SCIP_Bool SCIPsetIsFeasLT(SCIP_SET *set, SCIP_Real val1, SCIP_Real val2)
Definition: set.c:6619
SCIP_RETCODE SCIPsetSetCharParam(SCIP_SET *set, SCIP_MESSAGEHDLR *messagehdlr, const char *name, char value)
Definition: set.c:3424
SCIP_Bool SCIPsetIsLT(SCIP_SET *set, SCIP_Real val1, SCIP_Real val2)
Definition: set.c:6239
SCIP_Bool SCIPsetIsRelGE(SCIP_SET *set, SCIP_Real val1, SCIP_Real val2)
Definition: set.c:7164
SCIP_Bool SCIPsetIsDualfeasPositive(SCIP_SET *set, SCIP_Real val)
Definition: set.c:6929
SCIP_Bool SCIPsetIsDualfeasGT(SCIP_SET *set, SCIP_Real val1, SCIP_Real val2)
Definition: set.c:6874
SCIP_Bool SCIPsetIsGT(SCIP_SET *set, SCIP_Real val1, SCIP_Real val2)
Definition: set.c:6275
SCIP_Bool SCIPsetIsSumEQ(SCIP_SET *set, SCIP_Real val1, SCIP_Real val2)
Definition: set.c:6430
SCIP_Bool SCIPsetIsUpdateUnreliable(SCIP_SET *set, SCIP_Real newvalue, SCIP_Real oldvalue)
Definition: set.c:7316
SCIP_Bool SCIPsetIsFeasGE(SCIP_SET *set, SCIP_Real val1, SCIP_Real val2)
Definition: set.c:6685
SCIP_Bool SCIPsetIsFeasIntegral(SCIP_SET *set, SCIP_Real val)
Definition: set.c:6740
unsigned int SCIPsetInitializeRandomSeed(SCIP_SET *set, unsigned int initialseedvalue)
Definition: set.c:7393
internal methods for global SCIP settings
SCIP_Real SCIPsolGetVal(SCIP_SOL *sol, SCIP_SET *set, SCIP_STAT *stat, SCIP_VAR *var)
Definition: sol.c:1372
internal methods for storing primal CIP solutions
SCIP_Bool SCIPsolveIsStopped(SCIP_SET *set, SCIP_STAT *stat, SCIP_Bool checknodelimits)
Definition: solve.c:102
internal methods for main solving loop and node processing
internal methods for problem statistics
Definition: struct_lp.h:94
Definition: struct_lp.h:136
Definition: struct_cons.h:47
Definition: struct_cons.h:127
Definition: struct_event.h:189
Definition: struct_event.h:224
Definition: struct_event.h:162
Definition: struct_event.h:205
Definition: intervalarith.h:54
Definition: lpi_cpx.c:199
Definition: lpi_clp.cpp:133
Definition: lpi_clp.cpp:105
Definition: struct_lp.h:117
Definition: struct_lp.h:270
Definition: struct_message.h:46
Definition: struct_prob.h:49
Definition: struct_misc.h:158
Definition: struct_lp.h:106
Definition: struct_lp.h:202
Definition: struct_sepa.h:47
Definition: struct_set.h:74
Definition: struct_sol.h:74
Definition: struct_stat.h:60
SCIP_Longint ndualresolvelpiterations
Definition: struct_stat.h:70
SCIP_Longint nprimalresolvelpiterations
Definition: struct_stat.h:69
Definition: struct_var.h:208
datastructures for managing events
data structures for LP management
datastructures for storing and manipulating the main problem
SCIP main data structure.
datastructures for global SCIP settings
datastructures for problem statistics
datastructures for problem variables
Definition: heur_padm.c:135
internal methods for problem variables