cons_sos1.c
Go to the documentation of this file.
32 * variable is nonzero. The special case of two variables arises, for instance, from equilibrium or
48 * - If an empty constraint is created and then variables are added with SCIPaddVarSOS1(), weights
51 * - All other calls ignore the weights, i.e., if a nonempty constraint is created or variables are
74 * @todo Possibly allow to generate local cuts via strengthened local cuts (would need to modified coefficients of rows).
76 * @todo Check whether we can avoid turning off multi-aggregation (it is sometimes possible to fix a multi-aggregated
80 /*---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9----+----0----+----1----+----2*/
121 #define CONSHDLR_ENFOPRIORITY 100 /**< priority of the constraint handler for constraint enforcing */
122 #define CONSHDLR_CHECKPRIORITY -10 /**< priority of the constraint handler for checking feasibility */
123 #define CONSHDLR_SEPAFREQ 10 /**< frequency for separating cuts; zero means to separate only in the root node */
124 #define CONSHDLR_PROPFREQ 1 /**< frequency for propagating domains; zero means only preprocessing propagation */
125 #define CONSHDLR_EAGERFREQ 100 /**< frequency for using all instead of only the useful constraints in separation,
127 #define CONSHDLR_MAXPREROUNDS -1 /**< maximal number of presolving rounds the constraint handler participates in (-1: no limit) */
128 #define CONSHDLR_DELAYSEPA FALSE /**< should separation method be delayed, if other separators found cuts? */
129 #define CONSHDLR_DELAYPROP FALSE /**< should propagation method be delayed, if other propagators found reductions? */
130 #define CONSHDLR_NEEDSCONS TRUE /**< should the constraint handler be skipped, if no constraints are available? */
135 #define DEFAULT_MAXSOSADJACENCY 10000 /**< do not create an adjacency matrix if number of SOS1 variables is larger than predefined value
139 #define DEFAULT_MAXEXTENSIONS 1 /**< maximal number of extensions that will be computed for each SOS1 constraint */
140 #define DEFAULT_MAXTIGHTENBDS 5 /**< maximal number of bound tightening rounds per presolving round (-1: no limit) */
141 #define DEFAULT_PERFIMPLANALYSIS FALSE /**< if TRUE then perform implication graph analysis (might add additional SOS1 constraints) */
142 #define DEFAULT_DEPTHIMPLANALYSIS -1 /**< number of recursive calls of implication graph analysis (-1: no limit) */
150 #define DEFAULT_BRANCHSTRATEGIES "nbs" /**< possible branching strategies (see parameter DEFAULT_BRANCHINGRULE) */
151 #define DEFAULT_BRANCHINGRULE 'n' /**< which branching rule should be applied ? ('n': neighborhood, 'b': bipartite, 's': SOS1/clique)
153 #define DEFAULT_AUTOSOS1BRANCH TRUE /**< if TRUE then automatically switch to SOS1 branching if the SOS1 constraints do not overlap */
154 #define DEFAULT_FIXNONZERO FALSE /**< if neighborhood branching is used, then fix the branching variable (if positive in sign) to the value of the
156 #define DEFAULT_ADDCOMPS FALSE /**< if TRUE then add complementarity constraints to the branching nodes (can be used in combination with
158 #define DEFAULT_MAXADDCOMPS -1 /**< maximal number of complementarity constraints added per branching node (-1: no limit) */
159 #define DEFAULT_ADDCOMPSDEPTH 30 /**< only add complementarity constraints to branching nodes for predefined depth (-1: no limit) */
160 #define DEFAULT_ADDCOMPSFEAS -0.6 /**< minimal feasibility value for complementarity constraints in order to be added to the branching node */
161 #define DEFAULT_ADDBDSFEAS 1.0 /**< minimal feasibility value for bound inequalities in order to be added to the branching node */
162 #define DEFAULT_ADDEXTENDEDBDS TRUE /**< should added complementarity constraints be extended to SOS1 constraints to get tighter bound inequalities */
165 #define DEFAULT_NSTRONGROUNDS 0 /**< maximal number of strong branching rounds to perform for each node (-1: auto)
167 #define DEFAULT_NSTRONGITER 10000 /**< maximal number LP iterations to perform for each strong branching round (-2: auto, -1: no limit) */
170 #define DEFAULT_BOUNDCUTSFROMSOS1 FALSE /**< if TRUE separate bound inequalities from SOS1 constraints */
171 #define DEFAULT_BOUNDCUTSFROMGRAPH TRUE /**< if TRUE separate bound inequalities from the conflict graph */
172 #define DEFAULT_AUTOCUTSFROMSOS1 TRUE /**< if TRUE then automatically switch to separating from SOS1 constraints if the SOS1 constraints do not overlap */
173 #define DEFAULT_BOUNDCUTSFREQ 10 /**< frequency for separating bound cuts; zero means to separate only in the root node */
175 #define DEFAULT_MAXBOUNDCUTS 50 /**< maximal number of bound cuts separated per branching node */
176 #define DEFAULT_MAXBOUNDCUTSROOT 150 /**< maximal number of bound cuts separated per iteration in the root node */
177 #define DEFAULT_STRTHENBOUNDCUTS TRUE /**< if TRUE then bound cuts are strengthened in case bound variables are available */
178 #define DEFAULT_IMPLCUTSFREQ 0 /**< frequency for separating implied bound cuts; zero means to separate only in the root node */
179 #define DEFAULT_IMPLCUTSDEPTH 40 /**< node depth of separating implied bound cuts (-1: no limit) */
180 #define DEFAULT_MAXIMPLCUTS 50 /**< maximal number of implied bound cuts separated per branching node */
181 #define DEFAULT_MAXIMPLCUTSROOT 150 /**< maximal number of implied bound cuts separated per iteration in the root node */
211 SCIP_VAR* lbboundvar; /**< bound variable @p z from constraint \f$x \geq \mu \cdot z\f$ (or NULL if not existent) */
212 SCIP_VAR* ubboundvar; /**< bound variable @p z from constraint \f$x \leq \mu \cdot z\f$ (or NULL if not existent) */
213 SCIP_Real lbboundcoef; /**< value \f$\mu\f$ from constraint \f$x \geq \mu z \f$ (0.0 if not existent) */
214 SCIP_Real ubboundcoef; /**< value \f$\mu\f$ from constraint \f$x \leq \mu z \f$ (0.0 if not existent) */
215 SCIP_Bool lbboundcomp; /**< TRUE if the nodes from the connected component of the conflict graph the given node belongs to
217 SCIP_Bool ubboundcomp; /**< TRUE if the nodes from the connected component of the conflict graph the given node belongs to
243 int maxboundcuts; /**< maximal number of clique cuts separated per separation round (-1: no limit) */
244 SCIP_Bool strthenboundcuts; /**< if TRUE then bound cuts are strengthened in case bound variables are available */
245 };
250 {
254 SCIP_Bool isconflocal; /**< if TRUE then local conflicts are present and conflict graph has to be updated for each node */
258 int maxsosadjacency; /**< do not create an adjacency matrix if number of SOS1 variables is larger than predefined
261 SCIP_DIGRAPH* implgraph; /**< implication graph (@p j is successor of @p i if and only if \f$ x_i\not = 0 \Rightarrow x_j\not = 0\f$) */
273 int maxextensions; /**< maximal number of extensions that will be computed for each SOS1 constraint */
274 int maxtightenbds; /**< maximal number of bound tightening rounds per presolving round (-1: no limit) */
275 SCIP_Bool perfimplanalysis; /**< if TRUE then perform implication graph analysis (might add additional SOS1 constraints) */
276 int depthimplanalysis; /**< number of recursive calls of implication graph analysis (-1: no limit) */
282 char branchingrule; /**< which branching rule should be applied ? ('n': neighborhood, 'b': bipartite, 's': SOS1/clique)
284 SCIP_Bool autosos1branch; /**< if TRUE then automatically switch to SOS1 branching if the SOS1 constraints do not overlap */
285 SCIP_Bool fixnonzero; /**< if neighborhood branching is used, then fix the branching variable (if positive in sign) to the value of the
287 SCIP_Bool addcomps; /**< if TRUE then add complementarity constraints to the branching nodes additionally to domain fixings
289 int maxaddcomps; /**< maximal number of complementarity cons. and cor. bound ineq. added per branching node (-1: no limit) */
290 int addcompsdepth; /**< only add complementarity constraints to branching nodes for predefined depth (-1: no limit) */
291 SCIP_Real addcompsfeas; /**< minimal feasibility value for complementarity constraints in order to be added to the branching node */
292 SCIP_Real addbdsfeas; /**< minimal feasibility value for bound inequalities in order to be added to the branching node */
293 SCIP_Bool addextendedbds; /**< should added complementarity constraints be extended to SOS1 constraints to get tighter bound inequalities */
294 SCIP_Bool branchsos; /**< Branch on SOS condition in enforcing? This value can only be set to false if all SOS1 variables are binary */
296 SCIP_Bool branchweight; /**< Branch on SOS cons. with highest nonzero-variable weight for branching - needs branchnonzeros to be false */
299 int nstrongrounds; /**< maximal number of strong branching rounds to perform for each node (-1: auto)
301 int nstrongiter; /**< maximal number LP iterations to perform for each strong branching round (-2: auto, -1: no limit) */
304 SCIP_Bool boundcutsfromgraph; /**< if TRUE separate bound inequalities from the conflict graph */
305 SCIP_Bool autocutsfromsos1; /**< if TRUE then automatically switch to separating SOS1 constraints if the SOS1 constraints do not overlap */
306 SCIP_Bool switchcutsfromsos1; /**< whether to switch to separate bound inequalities from SOS1 constraints */
307 int boundcutsfreq; /**< frequency for separating bound cuts; zero means to separate only in the root node */
310 int maxboundcutsroot; /**< maximal number of bound cuts separated per iteration in the root node */
312 SCIP_Bool strthenboundcuts; /**< if TRUE then bound cuts are strengthened in case bound variables are available */
313 int implcutsfreq; /**< frequency for separating implied bound cuts; zero means to separate only in the root node */
316 int maximplcutsroot; /**< maximal number of implied bound cuts separated per iteration in the root node */
328 SCIP_Bool** adjacencymatrix, /**< adjacency matrix of conflict graph (lower half) (or NULL if an adjacencymatrix is not at hand) */
333 {
385 /** checks whether a variable violates an SOS1 constraint w.r.t. sol together with at least one other variable */
393 {
405 /* check whether variable is nonzero w.r.t. sol and the bounds have not been fixed to zero by propagation */
406 if ( ! SCIPisFeasZero(scip, solval) && ( ! SCIPisFeasZero(scip, SCIPvarGetLbLocal(var)) || ! SCIPisFeasZero(scip, SCIPvarGetUbLocal(var)) ) )
421 if ( ! SCIPisFeasZero(scip, solval) && ( ! SCIPisFeasZero(scip, SCIPvarGetLbLocal(var)) || ! SCIPisFeasZero(scip, SCIPvarGetUbLocal(var)) ) )
430 /** returns solution value of imaginary binary big-M variable of a given node from the conflict graph */
438 {
480 /** gets (variable) lower bound value of current LP relaxation solution for a given node from the conflict graph */
488 {
507 /** gets (variable) upper bound value of current LP relaxation solution for a given node from the conflict graph */
515 {
580 {
583 if ( SCIPisFeasPositive(scip, SCIPvarGetLbLocal(var)) || SCIPisFeasNegative(scip, SCIPvarGetUbLocal(var)) )
597 if ( ! SCIPisFeasZero(scip, SCIPvarGetLbLocal(var)) || ! SCIPisFeasZero(scip, SCIPvarGetUbLocal(var)) )
599 SCIPdebugMsg(scip, "creating constraint to force multi-aggregated variable <%s> to 0.\n", SCIPvarGetName(var));
601 SCIP_CALL( SCIPcreateConsLinear(scip, &cons, "branch", 1, &var, &val, 0.0, 0.0, TRUE, TRUE, TRUE, TRUE, TRUE,
621 * Try to treat fixing by special consideration of multiaggregated variables. For a multi-aggregation
625 * we can express the fixing \f$x = 0\f$ by fixing all \f$x_i\f$ to 0 if \f$c = 0\f$ and the lower bounds of \f$x_i\f$
626 * are nonnegative if \f$\alpha_i > 0\f$ or the upper bounds are nonpositive if \f$\alpha_i < 0\f$.
635 {
666 if ( (SCIPisPositive(scip, aggrvals[i]) && SCIPisNegative(scip, SCIPvarGetLbLocal(aggrvars[i]))) ||
710 SCIP_Bool* success /**< whether fixing was successful, i.e., variable is not multi-aggregated */
718 if ( SCIPisFeasPositive(scip, SCIPvarGetLbLocal(var)) || SCIPisFeasNegative(scip, SCIPvarGetUbLocal(var)) )
777 SCIP_CALL( SCIPunlockVarCons(scip, var, cons, SCIPisFeasNegative(scip, SCIPvarGetLbGlobal(var)),
792 {
843 if ( SCIPisFeasPositive(scip, SCIPvarGetLbLocal(var)) || SCIPisFeasNegative(scip, SCIPvarGetUbLocal(var)) )
854 if ( consdata->rowub != NULL && ! SCIPisInfinity(scip, SCIPvarGetUbGlobal(var)) && ! SCIPisZero(scip, SCIPvarGetUbGlobal(var)) )
860 if ( consdata->rowlb != NULL && ! SCIPisInfinity(scip, SCIPvarGetLbGlobal(var)) && ! SCIPisZero(scip, SCIPvarGetLbGlobal(var)) )
877 /* variable does not appear in the conflict graph: switch to SOS1 branching rule, which does not make use of a conflict graph
879 SCIPdebugMsg(scip, "Switched to SOS1 branching rule, since conflict graph could be infeasible.\n");
884 /* if the constraint is local, then there is no need to act, since local constraints are handled by the local conflict graph in the
922 SCIPdebugMsg(scip, "Added new conflict graph arc from variable %s to variable %s.\n", SCIPvarGetName(var), SCIPvarGetName(vars[v]));
923 SCIPsortInt(SCIPdigraphGetSuccessors(conflictgraph, node), SCIPdigraphGetNSuccessors(conflictgraph, node));
928 SCIPdebugMsg(scip, "Added new conflict graph arc from variable %s to variable %s.\n", SCIPvarGetName(vars[v]), SCIPvarGetName(var));
929 SCIPsortInt(SCIPdigraphGetSuccessors(conflictgraph, nodev), SCIPdigraphGetNSuccessors(conflictgraph, nodev));
934 /* variable does not appear in the conflict graph: switch to SOS1 branching rule, which does not make use of a conflict graph
936 SCIPdebugMsg(scip, "Switched to SOS1 branching rule, since conflict graph could be infeasible.\n");
955 )
971 SCIPerrorMessage("cannot add variable to SOS1 constraint <%s> that does not contain weights.\n", SCIPconsGetName(cons));
1025 {
1083 )
1093 SCIP_CALL( SCIPdropVarEvent(scip, consdata->vars[pos], EVENTHDLR_EVENT_TYPE, eventhdlr, (SCIP_EVENTDATA*)cons, -1) ); /*lint !e740*/
1113 * Algorithm 457: Finding all Cliques of an Undirected Graph, Bron & Kerbosch, Commun. ACM, 1973
1119 SCIP_Bool** adjacencymatrix, /**< adjacencymatrix of the conflict graph (only lower half filled) */
1120 SCIP_DIGRAPH* vertexcliquegraph, /**< graph that contains the information which cliques contain a given vertex
1121 * vertices of variables = 0, ..., nsos1vars-1; vertices of cliques = nsos1vars, ..., nsos1vars+ncliques-1*/
1133 int* workingset, /**< set of vertices that already served as extension and set of candidates that probably will lead to an extension */
1197 if ( vertex != workingset[j] && ! isConnectedSOS1(adjacencymatrix, NULL, vertex, workingset[j]) )
1226 /* If fixed point is initially chosen from candidates then number of disconnections will be preincreased by one. */
1268 SCIP_CALL( SCIPallocBlockMemoryArray(scip, &(cliques[*ncliques]), cliquesizes[*ncliques]) );/*lint !e866*/
1293 /* add arc from clique vertex to clique (needed in presolRoundConssSOS1() to delete redundand cliques) */
1303 cliquesizes[*ncliques] = cliquesizes[*ncliques-1]; /* cliquesizes[*ncliques] = size of newclique */
1320 SCIP_CALL( extensionOperatorSOS1(scip, conshdlrdata, adjacencymatrix, vertexcliquegraph, nsos1vars, nconss, cons, vars, weights, FALSE, usebacktrack,
1321 cliques, ncliques, cliquesizes, newclique, workingsetnew, nworkingsetnew, nextsnew, pos, maxextensions, naddconss, success) );
1339 SCIP_CALL( extensionOperatorSOS1(scip, conshdlrdata, adjacencymatrix, vertexcliquegraph, nsos1vars, nconss, cons, vars, weights, FALSE, usebacktrack,
1340 cliques, ncliques, cliquesizes, newclique, workingset, nworkingset, nextsnew, pos, maxextensions, naddconss, success) );
1379 SCIP_DIGRAPH* conflictgraphlin, /**< conflict graph of linear constraint (nodes: 1, ..., nlinvars) */
1383 int* posinlinvars /**< posinlinvars[i] = position (index) of SOS1 variable i in linear constraint,
1384 * posinlinvars[i]= -1 if @p i is not a SOS1 variable or not a variable of the linear constraint */
1399 for (v = 1; v < nlinvars; ++v) /* we start with v = 1, since "indexinlinvars < v" (see below) is never fulfilled for v = 0 */
1529 /** get nodes whose corresponding SOS1 variables are nonzero if an SOS1 variable of a given node is nonzero */
1535 SCIP_DIGRAPH* implgraph, /**< implication graph (@p j is successor of @p i if and only if \f$ x_i\not = 0 \Rightarrow x_j\not = 0\f$) */
1537 SCIP_Bool* implnodes, /**< implnodes[i] = TRUE if the SOS1 variable corresponding to node i in the implication graph is implied to be nonzero */
1573 if ( sos1node >= 0 && ! implnodes[sos1node] && ( SCIPisFeasPositive(scip, data->lbimpl) || SCIPisFeasNegative(scip, data->ubimpl) ) )
1577 SCIP_CALL( getSOS1Implications(scip, conshdlrdata, vars, implgraph, implhash, implnodes, succnode) );
1662 SCIPdebugMsg(scip, "substituted variable <%s> by <%s>.\n", SCIPvarGetName(vars[j]), SCIPvarGetName(var));
1663 SCIP_CALL( SCIPdropVarEvent(scip, consdata->vars[j], EVENTHDLR_EVENT_TYPE, eventhdlr, (SCIP_EVENTDATA*)cons, -1) ); /*lint !e740*/
1664 SCIP_CALL( SCIPcatchVarEvent(scip, var, EVENTHDLR_EVENT_TYPE, eventhdlr, (SCIP_EVENTDATA*)cons, NULL) ); /*lint !e740*/
1680 SCIPdebugMsg(scip, "variable <%s> appears twice in constraint, fixing it to 0.\n", SCIPvarGetName(vars[j]));
1724 SCIPdebugMsg(scip, "Deleting SOS1 constraint <%s> with < 2 variables.\n", SCIPconsGetName(cons));
1737 SCIPdebugMsg(scip, "The problem is infeasible: more than one variable has bounds that keep it from being 0.\n");
1764 SCIPdebugMsg(scip, "Deleting redundant SOS1 constraint <%s> with one variable.\n", SCIPconsGetName(cons));
1772 /* note: there is no need to update consdata->nfixednonzeros, since the constraint is deleted as soon nfixednonzeros > 0. */
1781 SCIP_CALL( SCIPcreateConsSetpack(scip, &setpackcons, SCIPconsGetName(cons), consdata->nvars, consdata->vars,
1782 SCIPconsIsInitial(cons), SCIPconsIsSeparated(cons), SCIPconsIsEnforced(cons), SCIPconsIsChecked(cons),
1783 SCIPconsIsPropagated(cons), SCIPconsIsLocal(cons), SCIPconsIsModifiable(cons), SCIPconsIsDynamic(cons),
1788 SCIPdebugMsg(scip, "Upgrading SOS1 constraint <%s> to set packing constraint.\n", SCIPconsGetName(cons));
1878 /* Use block memory for cliques, because sizes might be quite different and allocation interfers with workingset. */
1926 SCIP_CALL( presolRoundConsSOS1(scip, cons, consdata, eventhdlr, &substituted, &cutoff, &success, ndelconss, nupgdconss, nfixedvars, nremovedvars) );
2029 SCIP_CALL( cliqueGetCommonSuccessorsSOS1(conshdlrdata, conflictgraph, newclique, vars, nvars, comsucc, &ncomsucc) );
2034 SCIP_CALL( extensionOperatorSOS1(scip, conshdlrdata, adjacencymatrix, vertexcliquegraph, nsos1vars, nconss, cons, consvars, consweights,
2035 TRUE, (maxextensions <= 1) ? FALSE : TRUE, cliques, &ncliques, cliquesizes, newclique, comsucc, ncomsucc, 0, -1, &maxextensions,
2091 * - adds (possibly new) complementarity constraints to the problem if variables are implied to be zero
2092 * - returns that the subproblem is infeasible if the domain of a variable turns out to be empty
2100 SCIP_DIGRAPH* implgraph, /**< implication graph (@p j is successor of @p i if and only if \f$ x_i\not = 0 \Rightarrow x_j\not = 0\f$) */
2102 SCIP_Bool** adjacencymatrix, /**< adjacencymatrix of the conflict graph (only lower half filled) */
2104 int nonznode, /**< node of the conflict graph that is implied to be nonzero if given node is nonzero */
2105 SCIP_Real* impllbs, /**< current lower variable bounds if given node is nonzero (update possible) */
2106 SCIP_Real* implubs, /**< current upper variable bounds if given node is nonzero (update possible) */
2107 SCIP_Bool* implnodes, /**< indicates which variables are currently implied to be nonzero if given node is nonzero (update possible) */
2110 SCIP_Bool* infeasible /**< pointer to store whether the subproblem gets infeasible if variable to 'nonznode' is nonzero */
2122 if ( conshdlrdata->depthimplanalysis >= 0 && *probingdepth >= conshdlrdata->depthimplanalysis )
2130 /* loop through neighbors of 'nonznode' in the conflict graph; these variables are implied to be zero */
2135 /* if the current variable domain of the successor node does not contain the value zero then return that the problem is infeasible
2136 * else if 'succnode' is not already complementary to 'givennode' then add a new complementarity constraint */
2137 if ( givennode == succnode || SCIPisFeasPositive(scip, impllbs[succnode]) || SCIPisFeasNegative(scip, implubs[succnode]) )
2158 SCIPsortInt(SCIPdigraphGetSuccessors(conflictgraph, givennode), SCIPdigraphGetNSuccessors(conflictgraph, givennode));
2159 SCIPsortInt(SCIPdigraphGetSuccessors(conflictgraph, succnode), SCIPdigraphGetNSuccessors(conflictgraph, succnode));
2172 (void) SCIPsnprintf(namesos, SCIP_MAXSTRLEN, "presolved_sos1_%s_%s", SCIPvarGetName(var1), SCIPvarGetName(var2) );
2173 SCIP_CALL( SCIPcreateConsSOS1(scip, &soscons, namesos, 0, NULL, NULL, TRUE, TRUE, TRUE, FALSE, TRUE,
2190 /* by construction: nodes of SOS1 variables are equal for conflict graph and implication graph */
2191 assert( nonznode == SCIPhashmapGetImageInt(implhash, SCIPnodeGetVarSOS1(conflictgraph, nonznode)) );
2211 /* if node is SOS1 and implied to be nonzero for the first time, then this recursively may imply further bound changes */
2212 if ( varGetNodeSOS1(conshdlrdata, totalvars[succnode]) >= 0 && ! implnodes[succnode] && SCIPisFeasPositive(scip, data->lbimpl) )
2214 /* by construction: nodes of SOS1 variables are equal for conflict graph and implication graph */
2215 assert( succnode == SCIPhashmapGetImageInt(implhash, SCIPnodeGetVarSOS1(conflictgraph, succnode)) );
2217 SCIP_CALL( performImplicationGraphAnalysis(scip, conshdlrdata, conflictgraph, totalvars, implgraph, implhash, adjacencymatrix, givennode, succnode, impllbs, implubs, implnodes, naddconss, probingdepth, infeasible) );
2231 /* if node is SOS1 and implied to be nonzero for the first time, then this recursively may imply further bound changes */
2232 if ( varGetNodeSOS1(conshdlrdata, totalvars[succnode]) >= 0 && ! implnodes[succnode] && SCIPisFeasNegative(scip, data->ubimpl) )
2234 /* by construction: nodes of SOS1 variables are equal for conflict graph and implication graph */
2235 assert( succnode == SCIPhashmapGetImageInt(implhash, SCIPnodeGetVarSOS1(conflictgraph, succnode)) );
2237 SCIP_CALL( performImplicationGraphAnalysis(scip, conshdlrdata, conflictgraph, totalvars, implgraph, implhash, adjacencymatrix, givennode, succnode, impllbs, implubs, implnodes, naddconss, probingdepth, infeasible) );
2251 /** returns whether node is implied to be zero; this information is taken from the input array 'implnodes' */
2255 SCIP_Bool* implnodes, /**< implnodes[i] = TRUE if the SOS1 variable corresponding to node i in the implication graph is implied to be nonzero */
2314 if ( ( lower && SCIPisFeasLT(scip, ub, newbound) ) || ( ! lower && SCIPisFeasGT(scip, lb, newbound) ) )
2326 SCIPdebugMsg(scip, "detected infeasibility while trying to fix variable <%s> to zero\n", SCIPvarGetName(varv));
2332 SCIPdebugMsg(scip, "fixed variable %s from lb = %f and ub = %f to 0.0 \n", SCIPvarGetName(varv), lb, ub);
2344 /* search for nodew in existing successors. If this is the case then check whether the lower implication bound may be updated ... */
2361 SCIPdebugMsg(scip, "updated to implication %s != 0 -> %s >= %f\n", SCIPvarGetName(varv), SCIPvarGetName(varw), newbound);
2371 SCIPdebugMsg(scip, "updated to implication %s != 0 -> %s >= %f\n", SCIPvarGetName(varv), SCIPvarGetName(varw), newbound);
2377 /* ..., otherwise if there does not exist an arc between indv and indw already, then create one and add implication */
2386 SCIPdebugMsg(scip, "add implication %s != 0 -> %s >= %f\n", SCIPvarGetName(varv), SCIPvarGetName(varw), newbound);
2392 SCIPdebugMsg(scip, "add implication %s != 0 -> %s <= %f\n", SCIPvarGetName(varv), SCIPvarGetName(varw), newbound);
2404 * Assume the variable from the input is nonzero. If this implies that some other variable is also nonzero, then
2413 SCIP_DIGRAPH* implgraph, /**< implication graph (@p j is successor of @p i if and only if \f$ x_i\not = 0 \Rightarrow x_j\not = 0\f$) */
2415 SCIP_Bool* implnodes, /**< implnodes[i] = TRUE if the SOS1 variable corresponding to node i in the implication graph is implied to be nonzero */
2426 SCIP_Real boundnonzero, /**< bound of variable if it is known to be nonzero if infinity values are not summarized */
2427 int ninftynonzero, /**< number of times infinity/-infinity has to be summarized to boundnonzero */
2442 nodev = varGetNodeSOS1(conshdlrdata, var); /* possibly -1 if var is not involved in an SOS1 constraint */
2444 /* if nodev is an index of an SOS1 variable and at least one lower bound of a variable that is not x_v is infinity */
2460 /* variable should not be fixed to be already zero (note x_v is fixed to be nonzero by assumption) */
2461 if ( nodew < 0 || ( nodev != nodew && ! isConnectedSOS1(adjacencymatrix, NULL, nodev, nodew) && ! isImpliedZero(conflictgraph, implnodes, nodew) ) )
2470 /* boundnonzero is the bound of x_v if x_v is nonzero we use this information to get a bound of x_w if x_v is
2482 nodecliq = varGetNodeSOS1(conshdlrdata, vars[indcliq]); /* possibly -1 if variable is not involved in an SOS1 constraint */
2484 /* if nodecliq is not a member of an SOS1 constraint or the variable corresponding to nodecliq is not implied to be zero if x_v != 0 */
2485 if ( nodecliq < 0 || (! isConnectedSOS1(adjacencymatrix, NULL, nodev, nodecliq) && ! isImpliedZero(conflictgraph, implnodes, nodecliq) ) )
2489 if ( !SCIPisInfinity(scip, REALABS(bounds[w])) && !SCIPisInfinity(scip, REALABS(implbound + bounds[w])) )
2497 if ( SCIPisInfinity(scip, REALABS(bounds[indcliq])) || SCIPisInfinity(scip, REALABS(implbound - bounds[indcliq])) )
2537 SCIP_CALL( updateArcData(scip, implgraph, implhash, totalvars, var, vars[w], lb, ub, newbound, TRUE, nchgbds, update, infeasible) );
2541 SCIP_CALL( updateArcData(scip, implgraph, implhash, totalvars, var, vars[w], lb, ub, newbound, FALSE, nchgbds, update, infeasible) );
2548 SCIP_CALL( updateArcData(scip, implgraph, implhash, totalvars, var, vars[w], lb, ub, newbound, FALSE, nchgbds, update, infeasible) );
2552 SCIP_CALL( updateArcData(scip, implgraph, implhash, totalvars, var, vars[w], lb, ub, newbound, TRUE, nchgbds, update, infeasible) );
2565 * For a given vertex @p v search for a clique of the conflict graph induced by the variables of a linear constraint that
2572 SCIP_DIGRAPH* conflictgraphroot, /**< conflict graph of the root node (nodes: 1, ..., @p nsos1vars) */
2573 SCIP_DIGRAPH* conflictgraphlin, /**< conflict graph of linear constraint (nodes: 1, ..., @p nlinvars) */
2575 SCIP_Bool* coveredvars, /**< states which variables of the linear constraint are currently covered by a clique */
2579 SCIP_Bool considersolvals /**< TRUE if largest auxiliary bigM values of variables should be prefered */
2631 /* search for the extension with the largest absolute value of its LP relaxation solution value */
2685 SCIP_DIGRAPH* implgraph, /**< implication graph (@p j is successor of @p i if and only if \f$ x_i\not = 0 \f$ implies a new lower/upper bound for \f$ x_j\f$) */
2692 SCIP_Bool* implupdate, /**< pointer to store whether the implication graph has been updated in this function call */
2700 SCIP_Bool* implnodes = NULL; /* implnodes[i] = TRUE if the SOS1 variable corresponding to node i in the implication graph is implied to be nonzero */
2701 SCIP_Bool* coveredvars = NULL; /* coveredvars[i] = TRUE if variable with index i is covered by the clique cover */
2702 int* varindincons = NULL; /* varindincons[i] = position of SOS1 index i in linear constraint (-1 if x_i is not involved in linear constraint) */
2704 SCIP_VAR** trafolinvars = NULL; /* variables of transformed linear constraints without (multi)aggregated variables */
2712 SCIP_VAR** sos1linvars = NULL; /* variables that are not contained in linear constraint, but are in conflict with a variable from the linear constraint */
2806 SCIP_CALL( SCIPgetProbvarLinearSum(scip, trafolinvars, trafolinvals, &ntrafolinvars, ntrafolinvars, &constant, &requiredsize, TRUE) );
2812 SCIP_CALL( SCIPgetProbvarLinearSum(scip, trafolinvars, trafolinvals, &ntrafolinvars, requiredsize, &constant, &requiredsize, TRUE) );
2849 if ( SCIPisInfinity(scip, REALABS(lb)) || SCIPisInfinity(scip, REALABS(lb * trafolinvals[v])) )
2854 if ( SCIPisInfinity(scip, REALABS(ub)) || SCIPisInfinity(scip, REALABS(ub * trafolinvals[v])) )
2877 SCIP_CALL( genConflictgraphLinearCons(conshdlrdata, conflictgraphlin, conflictgraph, trafolinvars, ntrafolinvars, varindincons) );
2895 SCIP_CALL( SCIPallocBufferArray(scip, &(cliquecovers[ncliquecovers]), ntrafolinvars) ); /*lint !e866*/
2896 SCIP_CALL( computeVarsCoverSOS1(scip, conflictgraph, conflictgraphlin, trafolinvars, coveredvars, cliquecovers[ncliquecovers], &(cliquecoversizes[ncliquecovers]), v, FALSE) );
2904 /* compute variables that are not contained in transformed linear constraint, but are in conflict with a variable from the transformed linear constraint */
2927 /* if variable is not a member of linear constraint and not already listed in the array sos1linvars */
2940 /* sort each cliquecover array in ascending order of the lower bounds of a_i * x_i; fill vector varincover */
2993 nodev = varGetNodeSOS1(conshdlrdata, var); /* possibly -1 if var is not involved in an SOS1 constraint */
2999 SCIP_CALL( getSOS1Implications(scip, conshdlrdata, totalvars, implgraph, implhash, implnodes, SCIPhashmapGetImageInt(implhash, var)) );
3012 /* determine maximum without index v (note that the array 'cliquecovers' is sorted by the values of trafoub in non-increasing order) */
3015 if ( SCIPisInfinity(scip, trafoubs[indcliq]) || SCIPisInfinity(scip, REALABS(newboundnores - trafoubs[indcliq])) )
3023 if ( SCIPisInfinity(scip, trafoubs[cliquecovers[i][1]]) || SCIPisInfinity(scip, REALABS(newboundnores - trafoubs[cliquecovers[i][1]])) )
3029 /* determine maximum without index v and if x_v is nonzero (note that the array 'cliquecovers' is sorted by the values of trafoub in non-increasing order) */
3035 nodecliq = varGetNodeSOS1(conshdlrdata, trafolinvars[indcliq]); /* possibly -1 if variable is not involved in an SOS1 constraint */
3040 /* if nodev or nodecliq are not a member of an SOS1 constraint or the variable corresponding to nodecliq is not implied to be zero if x_v != 0 */
3041 if ( nodev < 0 || nodecliq < 0 || (! isConnectedSOS1(adjacencymatrix, NULL, nodev, nodecliq) && ! isImpliedZero(conflictgraph, implnodes, nodecliq) ) )
3043 if ( SCIPisInfinity(scip, trafoubs[indcliq]) || SCIPisInfinity(scip, REALABS(newboundnonzero - trafoubs[indcliq])) )
3047 break; /* break since we are only interested in the maximum upper bound among the variables in the clique cover;
3048 * the variables in the clique cover form an SOS1 constraint, thus only one of them can be nonzero */
3090 SCIPdebugMsg(scip, "changed lower bound of variable %s from %f to %f \n", SCIPvarGetName(var), lb, newbound);
3111 SCIPdebugMsg(scip, "changed upper bound of variable %s from %f to %f \n", SCIPvarGetName(var), ub, newbound);
3118 SCIP_CALL( updateImplicationGraphSOS1(scip, conshdlrdata, conflictgraph, adjacencymatrix, implgraph, implhash, implnodes, totalvars, cliquecovers, cliquecoversizes, varincover,
3119 trafolinvars, trafolinvals, ntrafolinvars, trafoubs, var, trafoubv, newboundnonzero, ninftynonzero, TRUE, nchgbds, &update, &infeasible) );
3142 /* sort each cliquecover array in ascending order of the lower bounds of a_i * x_i; fill vector varincover */
3155 /* for every variable that is in transformed constraint or every variable that is in conflict with some variable from trans. cons.:
3193 nodev = varGetNodeSOS1(conshdlrdata, var); /* possibly -1 if var is not involved in an SOS1 constraint */
3196 /* determine incidence vector of implication variables (i.e., which SOS1 variables are nonzero if x_v is nonzero) */
3199 SCIP_CALL( getSOS1Implications(scip, conshdlrdata, totalvars, implgraph, implhash, implnodes, SCIPhashmapGetImageInt(implhash, var)) );
3212 /* determine minimum without index v (note that the array 'cliquecovers' is sorted by the values of trafolb in increasing order) */
3216 if ( SCIPisInfinity(scip, -trafolbs[indcliq]) || SCIPisInfinity(scip, REALABS(newboundnores - trafolbs[indcliq])) )
3224 if ( SCIPisInfinity(scip, -trafolbs[cliquecovers[i][1]]) || SCIPisInfinity(scip, REALABS(newboundnores - trafolbs[cliquecovers[i][1]])) )
3230 /* determine minimum without index v and if x_v is nonzero (note that the array 'cliquecovers' is sorted by the values of trafolb in increasing order) */
3236 nodecliq = varGetNodeSOS1(conshdlrdata, trafolinvars[indcliq]); /* possibly -1 if variable is not involved in an SOS1 constraint */
3241 /* if nodev or nodecliq are not a member of an SOS1 constraint or the variable corresponding to nodecliq is not implied to be zero if x_v != 0 */
3242 if ( nodev < 0 || nodecliq < 0 || (! isConnectedSOS1(adjacencymatrix, NULL, nodev, nodecliq) && ! isImpliedZero(conflictgraph, implnodes, nodecliq) ) )
3245 if ( SCIPisInfinity(scip, -trafolbs[indcliq]) || SCIPisInfinity(scip, REALABS(newboundnonzero - trafolbs[indcliq])) )
3249 break; /* break since we are only interested in the minimum lower bound among the variables in the clique cover;
3250 * the variables in the clique cover form an SOS1 constraint, thus only one of them can be nonzero */
3293 SCIPdebugMsg(scip, "changed upper bound of variable %s from %f to %f \n", SCIPvarGetName(var), ub, newbound);
3314 SCIPdebugMsg(scip, "changed lower bound of variable %s from %f to %f \n", SCIPvarGetName(var), lb, newbound);
3321 SCIP_CALL( updateImplicationGraphSOS1(scip, conshdlrdata, conflictgraph, adjacencymatrix, implgraph, implhash, implnodes, totalvars, cliquecovers, cliquecoversizes, varincover,
3322 trafolinvars, trafolinvals, ntrafolinvars, trafolbs, var, trafolbv, newboundnonzero, ninftynonzero, FALSE, nchgbds, &update, &infeasible) );
3424 for (j = 0; (j < conshdlrdata->maxtightenbds || conshdlrdata->maxtightenbds == -1 ) && ! cutoff; ++j)
3432 SCIP_CALL( tightenVarsBoundsSOS1(scip, conshdlrdata, conflictgraph, implgraph, implhash, adjacencymatrix, totalvars, ntotalvars, nsos1vars, nchgbds, &implupdate, &cutoff) );
3476 SCIP_CALL( performImplicationGraphAnalysis(scip, conshdlrdata, conflictgraph, totalvars, implgraph, implhash, adjacencymatrix, i, i, impllbs, implubs, implnodes, naddconss, &probingdepth, &infeasible) );
3486 SCIPvarGetName(totalvars[i]), SCIPvarGetLbLocal(totalvars[i]), SCIPvarGetUbLocal(totalvars[i]));
3542 )
3581 if ( SCIPisFeasPositive(scip, SCIPvarGetLbLocal(vars[j])) || SCIPisFeasNegative(scip, SCIPvarGetUbLocal(vars[j])) )
3589 SCIPdebugMsg(scip, "variable <%s> is fixed nonzero, fixing other variables to 0.\n", SCIPvarGetName(vars[firstFixedNonzero]));
3596 SCIP_CALL( inferVariableZero(scip, vars[j], cons, firstFixedNonzero, &infeasible, &tightened, &success) );
3607 SCIP_CALL( inferVariableZero(scip, vars[j], cons, firstFixedNonzero, &infeasible, &tightened, &success) );
3608 assert( ! infeasible ); /* there should be no variables after firstFixedNonzero that are fixed to be nonzero */
3660 assert( SCIPisFeasPositive(scip, SCIPvarGetLbLocal(SCIPnodeGetVarSOS1(conflictgraph, node))) || SCIPisFeasNegative(scip, SCIPvarGetUbLocal(SCIPnodeGetVarSOS1(conflictgraph, node))) );
3682 SCIP_CALL( inferVariableZero(scip, succvar, cons, inferinfo, &infeasible, &tightened, &success) );
3736 SCIP_CALL( SCIPinferVarLbCons(scip, var, succdata->lbimpl, cons, inferinfo, FALSE, &infeasible, &tightened) );
3752 SCIP_CALL( SCIPinferVarUbCons(scip, var, succdata->ubimpl, cons, inferinfo, FALSE, &infeasible, &tightened) );
3809 /* we do not create the adjacency matrix of the conflict graph if the number of SOS1 variables is larger than a predefined value */
3813 SCIPdebugMsg(scip, "Implication graph was not created since number of SOS1 variables (%d) is larger than %d.\n", nsos1vars, conshdlrdata->maxsosadjacency);
3833 * Note: For separation of implied bound cuts it is important that SOS1 variables are enumerated first
3915 SCIP_CALL( tightenVarsBoundsSOS1(scip, conshdlrdata, conflictgraph, conshdlrdata->implgraph, implhash, adjacencymatrix, implvars, nimplnodes, nsos1vars, nchgbds, &implupdate, cutoff) );
4002 /** get the vertices whose neighbor set covers a subset of the neighbor set of a given other vertex.
4009 SCIP_Bool* verticesarefixed, /**< array that indicates which variables are currently fixed to zero */
4011 int* neightocover, /**< neighbors of given vertex to be covered (or NULL if all neighbors shall be covered) */
4012 int nneightocover, /**< number of entries of neightocover (or 0 if all neighbors shall be covered )*/
4013 int* coververtices, /**< array to store the vertices whose neighbor set covers the neighbor set of the given vertex */
4104 assert( *ncoververtices <= 1 || coververtices[*ncoververtices - 1] > coververtices[*ncoververtices - 2] );
4118 SCIP_Bool* verticesarefixed, /**< vector that indicates which variables are currently fixed to zero */
4123 int* fixingsnode2, /**< vertices of variables that will be fixed to zero for the second node */
4127 SCIP_Bool takeallsucc; /* whether to set fixingsnode1 = neighbors of 'branchvertex' in the conflict graph */
4155 /* get all the neighbors of the variable with index 'branchvertex' whose solution value is nonzero */
4158 if ( ! SCIPisFeasZero(scip, SCIPgetSolVal(scip, sol, SCIPnodeGetVarSOS1(conflictgraph, succ[j]))) )
4165 /* if one of the sets fixingsnode1 or fixingsnode2 contains only one variable with a nonzero LP value we perform standard neighborhood branching */
4168 /* get the vertices whose neighbor set cover the selected subset of the neighbors of the given branching vertex */
4169 SCIP_CALL( getCoverVertices(conflictgraph, verticesarefixed, branchvertex, fixingsnode1, *nfixingsnode1, fixingsnode2, nfixingsnode2) );
4171 /* determine the intersection of the neighbors of branchvertex with the intersection of all the neighbors of fixingsnode2 */
4172 SCIP_CALL( getCoverVertices(conflictgraph, verticesarefixed, branchvertex, fixingsnode2, *nfixingsnode2, fixingsnode1, nfixingsnode1) );
4181 /* we decide whether to use all successors if one partition of complete bipartite subgraph has only one node */
4211 SCIP_CALL( getCoverVertices(conflictgraph, verticesarefixed, branchvertex, fixingsnode1, *nfixingsnode1, fixingsnode2, nfixingsnode2) );
4215 /* use neighborhood branching, i.e, for the second node only the branching vertex can be fixed */
4225 /** gets branching priorities for SOS1 variables and applies 'most infeasible selection' rule to determine a vertex for the next branching decision */
4233 SCIP_Bool* verticesarefixed, /**< vector that indicates which variables are currently fixed to zero */
4235 int* fixingsnode1, /**< vertices of variables that will be fixed to zero for the first node (size = nsos1vars) */
4236 int* fixingsnode2, /**< vertices of variables that will be fixed to zero for the second node (size = nsos1vars) */
4237 SCIP_Real* branchpriors, /**< pointer to store branching priorities (size = nsos1vars) or NULL if not needed */
4238 int* vertexbestprior, /**< pointer to store vertex with the best branching priority or NULL if not needed */
4270 if ( nsucc == 0 || SCIPisFeasZero(scip, SCIPgetSolVal(scip, sol, SCIPnodeGetVarSOS1(conflictgraph, i))) || verticesarefixed[i] )
4281 SCIP_CALL( getBranchingVerticesSOS1(scip, conflictgraph, sol, verticesarefixed, bipbranch, i, fixingsnode1, &nfixingsnode1, fixingsnode2, &nfixingsnode2) );
4334 int* fixingsexec, /**< vertices of variables to be fixed to zero for this strong branching execution */
4335 int nfixingsexec, /**< number of vertices of variables to be fixed to zero for this strong branching execution */
4336 int* fixingsop, /**< vertices of variables to be fixed to zero for the opposite strong branching execution */
4337 int nfixingsop, /**< number of vertices of variables to be fixed to zero for the opposite strong branching execution */
4339 SCIP_Bool fixnonzero, /**< shall opposite variable (if positive in sign) fixed to the feasibility tolerance
4341 int* domainfixings, /**< vertices that can be used to reduce the domain (should have size equal to number of variables) */
4342 int* ndomainfixings, /**< pointer to store number of vertices that can be used to reduce the domain, could be filled by earlier calls */
4344 SCIP_Real* objval, /**< pointer to store objective value of LP with fixed variables (SCIP_INVALID if reddomain = TRUE or lperror = TRUE) */
4345 SCIP_Bool* lperror /**< pointer to store whether an unresolved LP error or a strange solution status occurred */
4399 /* fix variable to some negative number with small absolute value or to -1.0 if variable is integral */
4418 if ( SCIPisFeasGT(scip, SCIPvarGetLbLocal(var), 0.0) || SCIPisFeasLT(scip, SCIPvarGetUbLocal(var), 0.0) )
4456 else if ( solstat == SCIP_LPSOLSTAT_OPTIMAL || solstat == SCIP_LPSOLSTAT_TIMELIMIT || solstat == SCIP_LPSOLSTAT_ITERLIMIT )
4482 SCIP_Bool* verticesarefixed, /**< vector that indicates which variables are currently fixed to zero */
4483 int* fixingsnode1, /**< pointer to store vertices of variables that will be fixed to zero for the first node (size = nsos1vars) */
4484 int* fixingsnode2, /**< pointer to store vertices of variables that will be fixed to zero for the second node (size = nsos1vars) */
4486 SCIP_Real* bestobjval1, /**< pointer to store LP objective for left child node of branching decision with best priority */
4487 SCIP_Real* bestobjval2, /**< pointer to store LP objective for right child node of branching decision with best priority */
4522 SCIP_CALL( getBranchingPrioritiesSOS1(scip, conshdlrdata, conflictgraph, sol, nsos1vars, verticesarefixed,
4594 /* if variable with index 'vertex' does not violate any complementarity in its neighborhood for the current LP relaxation solution */
4606 SCIP_CALL( getBranchingVerticesSOS1(scip, conflictgraph, sol, verticesarefixed, bipbranch, testvertex,
4610 SCIP_CALL( performStrongbranchSOS1(scip, conflictgraph, fixingsnode1, nfixingsnode1, fixingsnode2, nfixingsnode2,
4611 inititer, conshdlrdata->fixnonzero, domainfixings, &ndomainfixings, &infeasible1, &objval1, &lperror) );
4616 SCIP_CALL( performStrongbranchSOS1(scip, conflictgraph, fixingsnode2, nfixingsnode2, fixingsnode1, nfixingsnode1,
4641 score = MAX( REALABS(objval1 - lpobjval), SCIPfeastol(scip) ) * MAX( REALABS(objval2 - lpobjval), SCIPfeastol(scip) );/*lint !e666*/
4667 SCIP_CALL( fixVariableZeroNode(scip, SCIPnodeGetVarSOS1(conflictgraph, domainfixings[i]), node, &infeasible) );
4686 /** for two given vertices @p v1 and @p v2 search for a clique in the conflict graph that contains these vertices. From
4697 SCIP_Bool extend, /**< should @p v1 and @p v2 be greedily extended to a clique of larger size */
4812 else /* search for the extension with the largest absolute value of its LP relaxation solution value */
4915 * @note In this function the conflict graph is updated to the conflict graph of the considered child branching node.
4923 SCIP_DIGRAPH* localconflicts, /**< local conflicts (updates to local conflicts of child node) */
4926 SCIP_Bool* verticesarefixed, /**< vector that indicates which variables are currently fixed to zerox */
4927 int* fixingsnode1, /**< vertices of variables that will be fixed to zero for the branching node in the input of this function */
4929 int* fixingsnode2, /**< vertices of variables that will be fixed to zero for the other branching node */
4932 SCIP_Bool onlyviolsos1 /**< should only SOS1 constraints be added that are violated by the LP solution */
4953 int* coverarray; /* vertices, not in fixingsnode1 that cover all the vertices in array fixingsnode22 */
4978 assert( nfixingsnode1 <= 1 || (fixingsnode1[nfixingsnode1 - 1] > fixingsnode1[nfixingsnode1 - 2]) ); /* test: vertices are sorted */
4985 assert( nfixingsnode2 <= 1 || (fixingsnode2[nfixingsnode2 - 1] > fixingsnode2[nfixingsnode2 - 2]) ); /* test: vertices are sorted */
4989 /* compute the set of vertices that have a neighbor in the set fixingsnode2, but are not in the set fixingsnode1 or fixingsnode2 and are not already fixed */
5034 /* compute first partition of fixingsnode2 that is the intersection of the neighbors of 'vertex1' with the set fixingsnode2 */
5044 assert( nfixingsnode21 == 1 || (fixingsnode21[nfixingsnode21 - 1] > fixingsnode21[nfixingsnode21 - 2]) ); /* test: successor vertices are sorted */
5059 SCIPcomputeArraysSetminusInt(fixingsnode2, nfixingsnode2, fixingsnode21, nfixingsnode21, fixingsnode22, &nfixingsnode22);
5062 /* compute cover set (that are all the vertices not in fixingsnode1 and fixingsnode21, whose neighborhood covers all the vertices of fixingsnode22) */
5063 SCIP_CALL( getCoverVertices(conflictgraph, verticesarefixed, -1, fixingsnode22, nfixingsnode22, coverarray, &ncoverarray) );
5064 SCIPcomputeArraysSetminusInt(coverarray, ncoverarray, fixingsnode1, nfixingsnode1, coverarray, &ncoverarray);
5065 SCIPcomputeArraysSetminusInt(coverarray, ncoverarray, fixingsnode21, nfixingsnode21, coverarray, &ncoverarray);
5130 SCIPsortInt(SCIPdigraphGetSuccessors(localconflicts, vertex1), SCIPdigraphGetNSuccessors(localconflicts, vertex1));
5131 SCIPsortInt(SCIPdigraphGetSuccessors(localconflicts, vertex2), SCIPdigraphGetNSuccessors(localconflicts, vertex2));
5132 SCIPsortInt(SCIPdigraphGetSuccessors(conflictgraph, vertex1), SCIPdigraphGetNSuccessors(conflictgraph, vertex1));
5133 SCIPsortInt(SCIPdigraphGetSuccessors(conflictgraph, vertex2), SCIPdigraphGetNSuccessors(conflictgraph, vertex2));
5135 /* mark conflictgraph as not local such that the new arcs are deleted after currents node processing */
5203 (void) SCIPsnprintf(name, SCIP_MAXSTRLEN, "sos1_branchnode_%" SCIP_LONGINT_FORMAT "_no_%i", SCIPnodeGetNumber(node), *naddedconss);
5204 SCIP_CALL( SCIPcreateConsSOS1(scip, &conssos1, name, 0, NULL, NULL, TRUE, TRUE, TRUE, FALSE, TRUE,
5222 /* possibly create linear constraint of the form x_i/u_i + x_j/u_j <= t if a bound variable t with x_i <= u_i * t and x_j <= u_j * t exists.
5223 * Otherwise try to create a constraint of the form x_i/u_i + x_j/u_j <= 1. Try the same for the lower bounds. */
5224 (void) SCIPsnprintf(name, SCIP_MAXSTRLEN, "boundcons_branchnode_%" SCIP_LONGINT_FORMAT "_no_%i", SCIPnodeGetNumber(node), *naddedconss);
5228 SCIP_CALL( SCIPcreateConsLinear(scip, &conssos1, name, 0, NULL, NULL, -SCIPinfinity(scip), 0.0, TRUE, FALSE, TRUE, FALSE, FALSE,
5232 SCIP_CALL( getBoundConsFromVertices(scip, conflictgraph, sol, vertex1, vertex2, boundvar1, conshdlrdata->addextendedbds, conssos1, &feas) );
5237 SCIP_CALL( SCIPcreateConsLinear(scip, &conssos1, name, 0, NULL, NULL, -SCIPinfinity(scip), 1.0, TRUE, FALSE, TRUE, FALSE, FALSE,
5241 SCIP_CALL( getBoundConsFromVertices(scip, conflictgraph, sol, vertex1, vertex2, NULL, conshdlrdata->addextendedbds, conssos1, &feas) );
5284 SCIP_DIGRAPH* localconflicts, /**< local conflicts that should be removed from conflict graph */
5321 * - Branch on the neighborhood of a single variable @p i, i.e., in one branch \f$x_i\f$ is fixed to zero and in the
5324 * - Branch on complete bipartite subgraphs of the conflict graph, i.e., in one branch fix the variables from the first
5327 * - In addition to variable domain fixings, it is sometimes also possible to add new SOS1 constraints to the branching
5328 * nodes. This results in a nonstatic conflict graph, which may change dynamically with every branching node.
5330 * We make use of different selection rules that define on which system of SOS1 variables to branch next:
5334 * - Strong branching: Here, the LP-relaxation is partially solved for each branching decision among a candidate list.
5411 /* do nothing if there are not enough variables - this is usually eliminated by preprocessing */
5417 SCIPdebugMsg(scip, "propagating <%s> in enforcing (cutoff: %u, domain reductions: %d).\n", SCIPconsGetName(cons), cutoff, ngen);
5455 if ( ! SCIPisFeasZero(scip, SCIPvarGetUbLocal(var)) || ! SCIPisFeasZero(scip, SCIPvarGetLbLocal(var)) )
5465 if ( ! SCIPisFeasZero(scip, SCIPvarGetUbLocal(var)) || ! SCIPisFeasZero(scip, SCIPvarGetLbLocal(var)) )
5494 SCIPsortInt(SCIPdigraphGetSuccessors(conflictgraph, j), SCIPdigraphGetNSuccessors(conflictgraph, j));
5539 nstrongrounds = MAX(10, (int)SCIPfloor(scip, pow(log((SCIP_Real)nsos1vars), 1.0)));/*lint !e666*/
5541 nstrongrounds = MAX(5, (int)SCIPfloor(scip, pow(log((SCIP_Real)nsos1vars), 0.7)));/*lint !e666*/
5560 SCIP_CALL( getBranchingPrioritiesSOS1(scip, conshdlrdata, conflictgraph, sol, nsos1vars, verticesarefixed,
5589 SCIP_CALL( getBranchingDecisionStrongbranchSOS1(scip, conshdlrdata, conflictgraph, sol, nsos1vars, lpobjval,
5590 bipbranch, nstrongrounds, verticesarefixed, fixingsnode1, fixingsnode2, &branchvertex, &bestobjval1,
5634 SCIPerrorMessage("Incompatible parameter setting: branchsos can only be set to false if all SOS1 variables are binary.\n");
5644 SCIP_CALL( getBranchingVerticesSOS1(scip, conflictgraph, sol, verticesarefixed, bipbranch, branchvertex,
5692 /* fix variable to some negative number with small absolute value to -1.0 if variable is integral */
5697 /* fix variable to some negative number with small absolute value to -1.0 if variable is integral */
5707 SCIP_CALL( fixVariableZeroNode(scip, SCIPnodeGetVarSOS1(conflictgraph, fixingsnode1[j]), node1, &infeasible) );
5730 SCIP_CALL( fixVariableZeroNode(scip, SCIPnodeGetVarSOS1(conflictgraph, fixingsnode2[j]), node2, &infeasible) );
5735 if ( conshdlrdata->addcomps && ( conshdlrdata->addcompsdepth == -1 || conshdlrdata->addcompsdepth >= SCIPgetDepth(scip) ) )
5742 SCIP_CALL( addBranchingComplementaritiesSOS1(scip, node1, conshdlrdata, conflictgraph, conshdlrdata->localconflicts, sol,
5743 nsos1vars, verticesarefixed, fixingsnode1, nfixingsnode1, fixingsnode2, nfixingsnode2, &naddedconss, TRUE) );
5748 SCIP_CALL( addBranchingComplementaritiesSOS1(scip, node2, conshdlrdata, conflictgraph, conshdlrdata->localconflicts, sol,
5749 nsos1vars, verticesarefixed, fixingsnode2, nfixingsnode2, fixingsnode1, nfixingsnode1, &naddedconss, TRUE) );
5794 * Depending on the parameters (@c branchnonzeros, @c branchweight) there are three ways to choose
5800 * <TR><TD>@c false </TD><TD> @c true </TD><TD>maximal weight corresponding to nonzero variable</TD></TR>
5804 * @c branchnonzeros = @c false, @c branchweight = @c true allows the user to specify an order for
5864 /* do nothing if there are not enough variables - this is usually eliminated by preprocessing */
5870 SCIPdebugMsg(scip, "propagating <%s> in enforcing (cutoff: %u, domain reductions: %d).\n", SCIPconsGetName(cons), cutoff, ngen);