scip_var.c
Go to the documentation of this file.
43 /*---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9----+----0----+----1----+----2*/
92 /** creates and captures problem variable; if variable is of integral type, fractional bounds are automatically rounded;
93 * an integer variable with bounds zero and one is automatically converted into a binary variable;
95 * @warning When doing column generation and the original problem is a maximization problem, notice that SCIP will
96 * transform the problem into a minimization problem by multiplying the objective function by -1. Thus, the
97 * original objective function value of variables created during the solving process has to be multiplied by
100 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
112 * @note the variable gets captured, hence at one point you have to release it using the method SCIPreleaseVar()
125 SCIP_DECL_VARTRANS ((*vartrans)), /**< creates transformed user data by transforming original user data, or NULL */
126 SCIP_DECL_VARDELTRANS ((*vardeltrans)), /**< frees user data of transformed variable, or NULL */
134 SCIP_CALL( SCIPcheckStage(scip, "SCIPcreateVar", FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
147 name, lb, ub, obj, vartype, initial, removable, vardelorig, vartrans, vardeltrans, varcopy, vardata) );
157 name, lb, ub, obj, vartype, initial, removable, vardelorig, vartrans, vardeltrans, varcopy, vardata) );
168 /** creates and captures problem variable with optional callbacks and variable data set to NULL, which can be set
170 * SCIPvarSetDeltransData(), SCIPvarSetCopy(), and SCIPvarSetData(); sets variable flags initial=TRUE
171 * and removable = FALSE, which can be adjusted by using SCIPvarSetInitial() and SCIPvarSetRemovable(), resp.;
173 * an integer variable with bounds zero and one is automatically converted into a binary variable;
175 * @warning When doing column generation and the original problem is a maximization problem, notice that SCIP will
176 * transform the problem into a minimization problem by multiplying the objective function by -1. Thus, the
177 * original objective function value of variables created during the solving process has to be multiplied by
180 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
192 * @note the variable gets captured, hence at one point you have to release it using the method SCIPreleaseVar()
204 SCIP_CALL( SCIPcheckStage(scip, "SCIPcreateVarBasic", FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
206 SCIP_CALL( SCIPcreateVar(scip, var, name, lb, ub, obj, vartype, TRUE, FALSE, NULL, NULL, NULL, NULL, NULL) );
213 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
240 SCIP_CALL( SCIPcheckStage(scip, "SCIPwriteVarName", FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE) );
261 SCIPvarGetType(var) == SCIP_VARTYPE_IMPLINT ? SCIP_VARTYPE_IMPLINT_CHAR : SCIP_VARTYPE_CONTINUOUS_CHAR);
267 /** print the given list of variables to output stream separated by the given delimiter character;
269 * i. e. the variables x1, x2, ..., xn with given delimiter ',' are written as: <x1>, <x2>, ..., <xn>;
273 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
303 SCIP_CALL( SCIPcheckStage(scip, "SCIPwriteVarsList", FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE) );
324 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
354 SCIP_CALL( SCIPcheckStage(scip, "SCIPwriteVarsLinearsum", FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE) );
385 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
423 SCIP_CALL( SCIPcheckStage(scip, "SCIPwriteVarsPolynomial", FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE) );
458 /** parses variable information (in cip format) out of a string; if the parsing process was successful a variable is
459 * created and captured; if variable is of integral type, fractional bounds are automatically rounded; an integer
462 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
482 SCIP_DECL_VARTRANS ((*vartrans)), /**< creates transformed user data by transforming original user data */
491 SCIP_CALL( SCIPcheckStage(scip, "SCIPparseVar", FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
496 SCIP_CALL( SCIPvarParseOriginal(var, scip->mem->probmem, scip->set, scip->messagehdlr, scip->stat,
497 str, initial, removable, varcopy, vardelorig, vartrans, vardeltrans, vardata, endptr, success) );
506 SCIP_CALL( SCIPvarParseTransformed(var, scip->mem->probmem, scip->set, scip->messagehdlr, scip->stat,
507 str, initial, removable, varcopy, vardelorig, vartrans, vardeltrans, vardata, endptr, success) );
518 /** parses the given string for a variable name and stores the variable in the corresponding pointer if such a variable
521 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
546 SCIP_CALL( SCIPcheckStage(scip, "SCIPparseVarName", FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
581 if( *str == '[' && (str[1] == SCIP_VARTYPE_BINARY_CHAR || str[1] == SCIP_VARTYPE_INTEGER_CHAR ||
582 str[1] == SCIP_VARTYPE_IMPLINT_CHAR || str[1] == SCIP_VARTYPE_CONTINUOUS_CHAR ) && str[2] == ']' )
588 /** parse the given string as variable list (here ',' is the delimiter)) (<x1>, <x2>, ..., <xn>) (see
591 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
603 * @note The pointer success in only set to FALSE in the case that a variable with a parsed variable name does not exist.
605 * @note If the number of (parsed) variables is greater than the available slots in the variable array, nothing happens
606 * except that the required size is stored in the corresponding integer; the reason for this approach is that we
607 * cannot reallocate memory, since we do not know how the memory has been allocated (e.g., by a C++ 'new' or SCIP
632 SCIP_CALL( SCIPcheckStage(scip, "SCIPparseVarsList", FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
668 /* if all variable name searches were successful and the variable array has enough slots, copy the collected variables */
687 /** parse the given string as linear sum of variables and coefficients (c1 <x1> + c2 <x2> + ... + cn <xn>)
690 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
702 * @note The pointer success in only set to FALSE in the case that a variable with a parsed variable name does not exist.
704 * @note If the number of (parsed) variables is greater than the available slots in the variable array, nothing happens
705 * except that the required size is stored in the corresponding integer; the reason for this approach is that we
706 * cannot reallocate memory, since we do not know how the memory has been allocated (e.g., by a C++ 'new' or SCIP
727 SCIP_CALL( SCIPcheckStage(scip, "SCIPparseVarsLinearsum", FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
740 SCIP_CALL( SCIPparseVarsPolynomial(scip, str, &monomialvars, &monomialexps, &monomialcoefs, &monomialnvars, &nmonomials, endptr, success) );
744 assert(nmonomials == 0); /* SCIPparseVarsPolynomial should have freed all buffers, so no need to call free here */
754 SCIPfreeParseVarsPolynomialData(scip, &monomialvars, &monomialexps, &monomialcoefs, &monomialnvars, nmonomials);
790 SCIPfreeParseVarsPolynomialData(scip, &monomialvars, &monomialexps, &monomialcoefs, &monomialnvars, nmonomials);
800 * monomialcoefs, monomialnvars, *nmonomials) short after SCIPparseVarsPolynomial to free all the
803 * Parsing is stopped at the end of string (indicated by the \\0-character) or when no more monomials
806 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
861 SCIP_CALL( SCIPcheckStage(scip, "SCIPparseVarsPolynomial", FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
881 while( *str && state != SCIPPARSEPOLYNOMIAL_STATE_END && state != SCIPPARSEPOLYNOMIAL_STATE_ERROR )
910 SCIP_CALL( SCIPduplicateBlockMemoryArray(scip, &(*monomialvars)[*nmonomials], vars, nvars) ); /*lint !e866*/
911 SCIP_CALL( SCIPduplicateBlockMemoryArray(scip, &(*monomialexps)[*nmonomials], exponents, nvars) ); /*lint !e866*/
1138 /* SCIPwriteVarsPolynomial(scip, NULL, *monomialvars, *monomialexps, *monomialcoefs, *monomialnvars, *nmonomials, FALSE); */
1143 SCIPfreeParseVarsPolynomialData(scip, monomialvars, monomialexps, monomialcoefs, monomialnvars, *nmonomials);
1152 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1185 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPfreeParseVarsPolynomialData", FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
1204 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1225 SCIP_CALL( SCIPcheckStage(scip, "SCIPcaptureVar", FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE) );
1233 /** decreases usage counter of variable, if the usage pointer reaches zero the variable gets freed
1235 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1263 SCIP_CALL( SCIPcheckStage(scip, "SCIPreleaseVar", FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE) );
1282 if( !SCIPvarIsTransformed(*var) && (*var)->nuses == 1 && (*var)->data.original.transvar != NULL )
1284 SCIPerrorMessage("cannot release last use of original variable while associated transformed variable exists\n");
1298 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1311 SCIP_CALL( SCIPcheckStage(scip, "SCIPchgVarName", FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE) );
1339 /** gets and captures transformed variable of a given variable; if the variable is not yet transformed,
1342 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1363 SCIP_CALL( SCIPcheckStage(scip, "SCIPtransformVar", FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE) );
1372 SCIP_CALL( SCIPvarTransform(var, scip->mem->probmem, scip->set, scip->stat, scip->origprob->objsense, transvar) );
1379 * if a variable of the array is not yet transformed, a new transformed variable for this variable is created;
1382 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1407 SCIP_CALL( SCIPcheckStage(scip, "SCIPtransformVars", FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE) );
1418 SCIP_CALL( SCIPvarTransform(vars[v], scip->mem->probmem, scip->set, scip->stat, scip->origprob->objsense,
1429 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1453 SCIP_CALL( SCIPcheckStage(scip, "SCIPgetTransformedVar", FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE) );
1467 * it is possible to call this method with vars == transvars, but remember that variables that are not
1470 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1498 SCIP_CALL( SCIPcheckStage(scip, "SCIPgetTransformedVars", FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE) );
1506 SCIP_CALL( SCIPvarGetTransformed(vars[v], scip->mem->probmem, scip->set, scip->stat, &transvars[v]) );
1513 /** gets negated variable x' = lb + ub - x of variable x; negated variable is created, if not yet existing;
1514 * in difference to \ref SCIPcreateVar, the negated variable must not be released (unless captured explicitly)
1516 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1539 SCIP_CALL( SCIPcheckStage(scip, "SCIPgetNegatedVar", FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE) );
1547 /** gets negated variables x' = lb + ub - x of variables x; negated variables are created, if not yet existing
1549 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1575 SCIP_CALL( SCIPcheckStage(scip, "SCIPgetNegatedVars", FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE) );
1585 /** gets a binary variable that is equal to the given binary variable, and that is either active, fixed, or
1588 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1607 SCIP_Bool* negated /**< pointer to store whether the negation of an active variable was returned */
1616 SCIP_CALL( SCIPcheckStage(scip, "SCIPgetBinvarRepresentative", FALSE, TRUE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE) );
1632 /** gets binary variables that are equal to the given binary variables, and which are either active, fixed, or
1635 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1655 SCIP_Bool* negated /**< array to store whether the negation of an active variable was returned */
1665 SCIP_CALL( SCIPcheckStage(scip, "SCIPgetBinvarRepresentatives", FALSE, TRUE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE) );
1685 /** flattens aggregation graph of multi-aggregated variable in order to avoid exponential recursion later on
1687 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1706 SCIP_CALL( SCIPcheckStage(scip, "SCIPflattenVarAggregationGraph", FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE) );
1708 SCIP_CALL( SCIPvarFlattenAggregationGraph(var, scip->mem->probmem, scip->set, scip->eventqueue) );
1713 /** Transforms a given linear sum of variables, that is a_1*x_1 + ... + a_n*x_n + c into a corresponding linear sum of
1716 * If the number of needed active variables is greater than the available slots in the variable array, nothing happens
1717 * except that the required size is stored in the corresponding variable (requiredsize). Otherwise, the active variable
1720 * The reason for this approach is that we cannot reallocate memory, since we do not know how the memory has been
1723 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1738 * @note The resulting linear sum is stored into the given variable array, scalar array, and constant. That means the
1741 * @note That method can be used to convert a single variables into variable space of active variables. Therefore call
1757 SCIP_Real* constant, /**< pointer to constant c in linear sum a_1*x_1 + ... + a_n*x_n + c which
1762 SCIP_Bool mergemultiples /**< should multiple occurrences of a var be replaced by a single coeff? */
1773 SCIP_CALL( SCIPcheckStage(scip, "SCIPgetProbvarLinearSum", FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE) );
1774 SCIP_CALL( SCIPvarGetActiveRepresentatives(scip->set, vars, scalars, nvars, varssize, constant, requiredsize, mergemultiples) );
1780 * multi-aggregated variable, scalar and constant; if the variable resolves to a fixed variable,
1781 * "scalar" will be 0.0 and the value of the sum will be stored in "constant"; a multi-aggregation
1783 * is treated like an aggregation; if the multi-aggregation constant is infinite, "scalar" will be 0.0
1785 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1812 SCIP_CALL( SCIPcheckStage(scip, "SCIPgetProbvarSum", FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE) );
1818 /** return for given variables all their active counterparts; all active variables will be pairwise different
1819 * @note It does not hold that the first output variable is the active variable for the first input variable.
1821 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1854 SCIP_CALL( SCIPcheckStage(scip, "SCIPgetActiveVars", FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE) );
1868 * @note The return value of this method should be used carefully if the dual feasibility check was explictely disabled.
1913 * @note The return value of this method should be used carefully if the dual feasibility check was explictely disabled.
1933 return SCIPvarGetImplRedcost(var, scip->set, varfixing, scip->stat, scip->transprob, scip->lp);
1995 /** returns lower bound of variable directly before or after the bound change given by the bound change index
2072 /* handle multi-aggregated variables depending on one variable only (possibly caused by SCIPvarFlattenAggregationGraph()) */
2122 return var->data.negate.constant - SCIPgetVarUbAtIndex(scip, var->negatedvar, bdchgidx, after);
2131 /** returns upper bound of variable directly before or after the bound change given by the bound change index
2208 /* handle multi-aggregated variables depending on one variable only (possibly caused by SCIPvarFlattenAggregationGraph()) */
2258 return var->data.negate.constant - SCIPgetVarLbAtIndex(scip, var->negatedvar, bdchgidx, after);
2267 /** returns lower or upper bound of variable directly before or after the bound change given by the bound change index
2287 /** returns whether the binary variable was fixed at the time given by the bound change index */
2298 /* check the current bounds first in order to decide at which bound change information we have to look
2301 return ((SCIPvarGetLbLocal(var) > 0.5 && SCIPgetVarLbAtIndex(scip, var, bdchgidx, after) > 0.5)
2318 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPgetVarSol", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
2326 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
2345 SCIP_CALL( SCIPcheckStage(scip, "SCIPgetVarSols", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
2363 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
2381 SCIP_CALL( SCIPcheckStage(scip, "SCIPclearRelaxSolVals", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
2404 * this solution can be filled by the relaxation handlers and can be used by heuristics and for separation;
2409 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
2416 * @note This method incrementally updates the objective value of the relaxation solution. If the whole solution
2417 * should be updated, using SCIPsetRelaxSolVals() instead or calling SCIPclearRelaxSolVals() before setting
2429 SCIP_CALL( SCIPcheckStage(scip, "SCIPsetRelaxSolVal", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
2441 /** sets the values of the given variables in the global relaxation solution and informs SCIP about the validity
2443 * this solution can be filled by the relaxation handlers and can be used by heuristics and for separation;
2446 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
2468 SCIP_CALL( SCIPcheckStage(scip, "SCIPsetRelaxSolVals", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
2484 /** sets the values of the variables in the global relaxation solution to the values in the given primal solution
2485 * and informs SCIP about the validity and whether the solution can be enforced via linear cuts;
2486 * the relaxation solution can be filled by the relaxation handlers and might be used by heuristics and for separation
2488 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
2509 SCIP_CALL( SCIPcheckStage(scip, "SCIPsetRelaxSolValsSol", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
2524 SCIPrelaxationSetSolObj(scip->relaxation, SCIPsolGetObj(sol, scip->set, scip->transprob, scip->origprob));
2549 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPisRelaxSolValid", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
2554 /** informs SCIP that the relaxation solution is valid and whether the relaxation can be enforced through linear cuts
2556 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
2571 SCIP_CALL( SCIPcheckStage(scip, "SCIPmarkRelaxSolValid", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
2581 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
2594 SCIP_CALL( SCIPcheckStage(scip, "SCIPmarkRelaxSolInvalid", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
2618 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPgetRelaxSolVal", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
2644 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPgetRelaxSolObj", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
2676 return (SCIPgetVarAvgCutoffs(scip, var, SCIP_BRANCHDIR_DOWNWARDS) > SCIPgetVarAvgCutoffs(scip, var, SCIP_BRANCHDIR_UPWARDS));
2682 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
2689 * @note if propagation is enabled, strong branching is not done directly on the LP, but probing nodes are created
2694 SCIP_Bool enablepropagation /**< should propagation be done before solving the strong branching LP? */
2698 SCIP_CALL( SCIPcheckStage(scip, "SCIPstartStrongbranch", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
2702 SCIPdebugMsg(scip, "starting strong branching mode%s: lpcount=%" SCIP_LONGINT_FORMAT "\n", enablepropagation ? " with propagation" : "", scip->stat->lpcount - scip->stat->nsbdivinglps);
2704 /* start probing mode to allow propagation before solving the strong branching LPs; if no propagation should be done,
2721 /* other then in SCIPstartProbing(), we do not disable collecting variable statistics during strong branching;
2725 SCIP_CALL( SCIPtreeStartProbing(scip->tree, scip->mem->probmem, scip->set, scip->lp, scip->relaxation, scip->transprob, TRUE) );
2743 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
2756 SCIP_CALL( SCIPcheckStage(scip, "SCIPendStrongbranch", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
2758 /* depending on whether the strong branching mode was started with propagation enabled or not, we end the strong
2772 /* collect all bound changes deducted during probing, which were applied at the probing root and apply them to the
2802 SCIPdebugMsg(scip, "ending strong branching with probing: %d bound changes collected\n", nbnds);
2807 /* switch back from probing to normal operation mode and restore variables and constraints to focus node */
2808 SCIP_CALL( SCIPtreeEndProbing(scip->tree, scip->reopt, scip->mem->probmem, scip->set, scip->messagehdlr, scip->stat,
2817 SCIPdebugMsg(scip, "apply probing lower bound change <%s> >= %.9g\n", SCIPvarGetName(boundchgvars[i]), bounds[i]);
2822 SCIPdebugMsg(scip, "apply probing upper bound change <%s> <= %.9g\n", SCIPvarGetName(boundchgvars[i]), bounds[i]);
2841 /** analyze the strong branching for the given variable; that includes conflict analysis for infeasible branches and
2848 SCIP_Bool* downinf, /**< pointer to store whether the downwards branch is infeasible, or NULL */
2850 SCIP_Bool* downconflict, /**< pointer to store whether a conflict constraint was created for an
2872 * because the strong branching's bound change is necessary for infeasibility, it cannot be undone;
2873 * therefore, infeasible strong branchings on non-binary variables will not produce a valid conflict constraint
2883 SCIP_CALL( SCIPconflictAnalyzeStrongbranch(scip->conflict, scip->conflictstore, scip->mem->probmem, scip->set, scip->stat,
2884 scip->transprob, scip->origprob, scip->tree, scip->reopt, scip->lp, scip->branchcand, scip->eventqueue, scip->cliquetable, col, downconflict, upconflict) );
2888 /* the strong branching results can be used to strengthen the root reduced cost information which is used for example
2891 * @note Ignore the results if the LP solution of the down (up) branch LP is smaller which should not happened by
2894 if( SCIPtreeGetCurrentDepth(scip->tree) == 0 && SCIPvarIsBinary(var) && SCIPlpIsDualReliable(scip->lp) )
2902 if( col->sbdownvalid && SCIPsetFeasCeil(scip->set, col->primsol-1.0) >= col->lb - 0.5 && lpobjval < col->sbdown )
2903 SCIPvarUpdateBestRootSol(var, scip->set, SCIPvarGetUbGlobal(var), -(col->sbdown - lpobjval), lpobjval);
2904 if( col->sbupvalid && SCIPsetFeasFloor(scip->set, col->primsol+1.0) <= col->ub + 0.5 && lpobjval < col->sbup )
2905 SCIPvarUpdateBestRootSol(var, scip->set, SCIPvarGetLbGlobal(var), col->sbup - lpobjval, lpobjval);
2913 * Before calling this method, the strong branching mode must have been activated by calling SCIPstartStrongbranch();
2914 * after strong branching was done for all candidate variables, the strong branching mode must be ended by
2915 * SCIPendStrongbranch(). Since this method does not apply domain propagation before strongbranching,
2918 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
2929 SCIP_Bool idempotent, /**< should scip's state remain the same after the call (statistics, column states...), or should it be updated ? */
2932 SCIP_Bool* downvalid, /**< stores whether the returned down value is a valid dual bound, or NULL;
2936 SCIP_Bool* downinf, /**< pointer to store whether the downwards branch is infeasible, or NULL */
2938 SCIP_Bool* downconflict, /**< pointer to store whether a conflict constraint was created for an
2955 assert(!SCIPtreeProbing(scip->tree)); /* we should not be in strong branching with propagation mode */
2958 SCIP_CALL( SCIPcheckStage(scip, "SCIPgetVarStrongbranchFrac", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
2975 SCIPerrorMessage("cannot get strong branching information on non-COLUMN variable <%s>\n", SCIPvarGetName(var));
2984 SCIPerrorMessage("cannot get strong branching information on variable <%s> not in current LP\n", SCIPvarGetName(var));
2997 SCIP_CALL( SCIPcolGetStrongbranch(col, FALSE, scip->set, scip->stat, scip->transprob, scip->lp, itlim, !idempotent, !idempotent,
3000 /* check, if the branchings are infeasible; in exact solving mode, we cannot trust the strong branching enough to
3003 if( !(*lperror) && SCIPprobAllColsInLP(scip->transprob, scip->set, scip->lp) && !scip->set->misc_exactsolve )
3030 /** create, solve, and evaluate a single strong branching child (for strong branching with propagation) */
3045 SCIP_Longint* ndomreductions, /**< pointer to store the number of domain reductions found, or NULL */
3054 SCIP_Bool* foundsol, /**< pointer to store whether a primal solution was found during strong branching */
3073 /* the down branch is infeasible due to the branching bound change; since this means that solval is not within the
3074 * bounds, this should only happen if previous strong branching calls on other variables detected bound changes which
3084 /* bound changes are applied in SCIPendStrongbranch(), which can be seen as a conflict constraint */
3095 /* the up branch is infeasible due to the branching bound change; since this means that solval is not within the
3096 * bounds, this should only happen if previous strong branching calls on other variables detected bound changes which
3106 /* bound changes are applied in SCIPendStrongbranch(), which can be seen as a conflict constraint */
3116 /* we need to ensure that we can create at least one new probing node without exceeding the maximal tree depth */
3119 /* create a new probing node for the strong branching child and apply the new bound for the variable */
3234 SCIPdebugMsg(scip, "probing LP hit %s limit\n", SCIPgetLPSolstat(scip) == SCIP_LPSOLSTAT_ITERLIMIT ? "iteration" : "time");
3236 /* we access the LPI directly, because when a time limit was hit, we cannot access objective value and dual
3237 * feasibility using the SCIPlp... methods; we should try to avoid direct calls to the LPI, but this is rather
3238 * uncritical here, because we are immediately after the SCIPsolveProbingLP() call, because we access the LPI
3251 /* we use SCIP's infinity value here because a value larger than this is counted as infeasible by SCIP */
3274 case SCIP_LPSOLSTAT_NOTSOLVED: /* should only be the case for *cutoff = TRUE or *lperror = TRUE */
3275 case SCIP_LPSOLSTAT_OBJLIMIT: /* in this case, *cutoff should be TRUE and we should not get here */
3276 case SCIP_LPSOLSTAT_INFEASIBLE: /* in this case, *cutoff should be TRUE and we should not get here */
3283 /* If columns are missing in the LP, the cutoff flag may be wrong. Therefore, we need to set it and the valid pointer
3294 SCIPdebugMsg(scip, "error during strong branching probing LP solving: status=%d\n", SCIPgetLPSolstat(scip));
3299 /* if the subproblem was feasible, we store the local bounds of the variables after propagation and (possibly)
3301 * @todo do this after propagation? should be able to get valid bounds more often, but they might be weaker
3318 /* update newlbs and newubs: take the weaker of the already stored bounds and the current local bounds */
3340 * Before calling this method, the strong branching mode must have been activated by calling SCIPstartStrongbranch();
3341 * after strong branching was done for all candidate variables, the strong branching mode must be ended by
3342 * SCIPendStrongbranch(). Since this method applies domain propagation before strongbranching, propagation has to be be
3345 * Before solving the strong branching LP, domain propagation can be performed. The number of propagation rounds
3348 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
3355 * @warning When using this method, LP banching candidates and solution values must be copied beforehand, because
3368 SCIP_Bool* downvalid, /**< stores whether the returned down value is a valid dual bound, or NULL;
3372 SCIP_Longint* ndomredsdown, /**< pointer to store the number of domain reductions down, or NULL */
3374 SCIP_Bool* downinf, /**< pointer to store whether the downwards branch is infeasible, or NULL */
3376 SCIP_Bool* downconflict, /**< pointer to store whether a conflict constraint was created for an
3413 SCIP_CALL( SCIPcheckStage(scip, "SCIPgetVarStrongbranchWithPropagation", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
3419 * If this is not the case, we may still return that the up and down dual bounds are valid, because the branching
3421 * However, we must not set the downinf or upinf pointers to TRUE based on the dual bound, because we cannot
3426 /* if maxproprounds is -2, change it to 0, which for the following calls means using the parameter settings */
3466 SCIPerrorMessage("cannot get strong branching information on non-COLUMN variable <%s>\n", SCIPvarGetName(var));
3475 SCIPerrorMessage("cannot get strong branching information on variable <%s> not in current LP\n", SCIPvarGetName(var));
3482 SCIPdebugMsg(scip, "strong branching on var <%s>: solval=%g, lb=%g, ub=%g\n", SCIPvarGetName(var), solval,
3485 /* the up branch is infeasible due to the branching bound change; since this means that solval is not within the
3486 * bounds, this should only happen if previous strong branching calls on other variables detected bound changes which
3499 /* bound changes are applied in SCIPendStrongbranch(), which can be seen as a conflict constraint */
3510 /* the down branch is infeasible due to the branching bound change; since this means that solval is not within the
3511 * bounds, this should only happen if previous strong branching calls on other variables detected bound changes which
3524 /* bound changes are applied in SCIPendStrongbranch(), which can be seen as a conflict constraint */
3535 /* We now do strong branching by creating the two potential child nodes as probing nodes and solving them one after
3536 * the other. We will stop when the first child is detected infeasible, saving the effort we would need for the
3537 * second child. Since empirically, the up child tends to be infeasible more often, we do strongbranching first on
3560 SCIP_CALL( performStrongbranchWithPropagation(scip, var, downchild, firstchild, propagate, newub, itlim, maxproprounds,
3561 down, &downvalidlocal, ndomredsdown, downconflict, lperror, vars, nvars, newlbs, newubs, &foundsol, &cutoff) );
3580 (SCIPvarGetLbLocal(var) > newub + 0.5 || SCIPconflictGetNConflicts(scip->conflict) > oldnconflicts) )
3587 /* if this is the first call, we do not regard the up branch, its valid pointer is initially set to FALSE */
3594 SCIP_CALL( performStrongbranchWithPropagation(scip, var, downchild, firstchild, propagate, newlb, itlim, maxproprounds,
3595 up, &upvalidlocal, ndomredsup, upconflict, lperror, vars, nvars, newlbs, newubs, &foundsol, &cutoff) );
3616 (SCIPvarGetUbLocal(var) < newlb - 0.5 || SCIPconflictGetNConflicts(scip->conflict) > oldnconflicts) )
3623 /* if this is the first call, we do not regard the down branch, its valid pointer is initially set to FALSE */
3642 *down, *up, downvalidlocal, upvalidlocal, scip->stat->nsbdivinglpiterations - oldniters, itlim);
3655 /** gets strong branching information on column variable x with integral LP solution value (val); that is, the down branch
3658 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
3665 * @note If the integral LP solution value is the lower or upper bound of the variable, the corresponding branch will be
3672 SCIP_Bool idempotent, /**< should scip's state remain the same after the call (statistics, column states...), or should it be updated ? */
3675 SCIP_Bool* downvalid, /**< stores whether the returned down value is a valid dual bound, or NULL;
3679 SCIP_Bool* downinf, /**< pointer to store whether the downwards branch is infeasible, or NULL */
3681 SCIP_Bool* downconflict, /**< pointer to store whether a conflict constraint was created for an
3695 SCIP_CALL( SCIPcheckStage(scip, "SCIPgetVarStrongbranchInt", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
3715 SCIPerrorMessage("cannot get strong branching information on non-COLUMN variable <%s>\n", SCIPvarGetName(var));
3724 SCIPerrorMessage("cannot get strong branching information on variable <%s> not in current LP\n", SCIPvarGetName(var));
3737 SCIP_CALL( SCIPcolGetStrongbranch(col, TRUE, scip->set, scip->stat, scip->transprob, scip->lp, itlim, !idempotent, !idempotent,
3740 /* check, if the branchings are infeasible; in exact solving mode, we cannot trust the strong branching enough to
3743 if( !(*lperror) && SCIPprobAllColsInLP(scip->transprob, scip->set, scip->lp) && !scip->set->misc_exactsolve )
3772 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
3786 SCIP_Bool* downvalid, /**< stores whether the returned down values are valid dual bounds, or NULL;
3790 SCIP_Bool* downinf, /**< array to store whether the downward branches are infeasible, or NULL */
3803 SCIP_CALL( SCIPcheckStage(scip, "SCIPgetVarsStrongbranchesFrac", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
3834 SCIPerrorMessage("cannot get strong branching information on non-COLUMN variable <%s>\n", SCIPvarGetName(var));
3845 SCIPerrorMessage("cannot get strong branching information on variable <%s> not in current LP\n", SCIPvarGetName(var));
3860 SCIP_CALL( SCIPcolGetStrongbranches(cols, nvars, FALSE, scip->set, scip->stat, scip->transprob, scip->lp, itlim,
3863 /* check, if the branchings are infeasible; in exact solving mode, we cannot trust the strong branching enough to
3866 if( !(*lperror) && SCIPprobAllColsInLP(scip->transprob, scip->set, scip->lp) && !scip->set->misc_exactsolve )
3883 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
3897 SCIP_Bool* downvalid, /**< stores whether the returned down values are valid dual bounds, or NULL;
3901 SCIP_Bool* downinf, /**< array to store whether the downward branches are infeasible, or NULL */
3916 SCIP_CALL( SCIPcheckStage(scip, "SCIPgetVarsStrongbranchesInt", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
3946 SCIPerrorMessage("cannot get strong branching information on non-COLUMN variable <%s>\n", SCIPvarGetName(var));
3957 SCIPerrorMessage("cannot get strong branching information on variable <%s> not in current LP\n", SCIPvarGetName(var));
3972 SCIP_CALL( SCIPcolGetStrongbranches(cols, nvars, TRUE, scip->set, scip->stat, scip->transprob, scip->lp, itlim,
3975 /* check, if the branchings are infeasible; in exact solving mode, we cannot trust the strong branching enough to
3978 if( !(*lperror) && SCIPprobAllColsInLP(scip->transprob, scip->set, scip->lp) && !scip->set->misc_exactsolve )
3993 /** get LP solution status of last strong branching call (currently only works for strong branching with propagation) */
4005 /** gets strong branching information on COLUMN variable of the last SCIPgetVarStrongbranch() call;
4006 * returns values of SCIP_INVALID, if strong branching was not yet called on the given variable;
4007 * keep in mind, that the returned old values may have nothing to do with the current LP solution
4009 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
4021 SCIP_Bool* downvalid, /**< stores whether the returned down value is a valid dual bound, or NULL;
4025 SCIP_Real* solval, /**< stores LP solution value of variable at the last strong branching call, or NULL */
4029 SCIP_CALL( SCIPcheckStage(scip, "SCIPgetVarStrongbranchLast", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, FALSE, FALSE, FALSE) );
4037 SCIPcolGetStrongbranchLast(SCIPvarGetCol(var), down, up, downvalid, upvalid, solval, lpobjval);
4044 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
4063 SCIP_CALL( SCIPcheckStage(scip, "SCIPsetVarStrongbranchData", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
4071 SCIPcolSetStrongbranchData(SCIPvarGetCol(var), scip->set, scip->stat, scip->lp, lpobjval, primsol,
4079 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
4095 SCIP_CALL( SCIPcheckStage(scip, "SCIPtryStrongbranchLPSol", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
4148 /** gets node number of the last node in current branch and bound run, where strong branching was used on the
4151 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
4171 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPgetVarStrongbranchNode", FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE) );
4181 /** if strong branching was already applied on the variable at the current node, returns the number of LPs solved after
4185 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
4205 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPgetVarStrongbranchLPAge", FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE) );
4217 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
4237 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPgetVarNStrongbranchs", FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE) );
4249 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
4273 SCIP_CALL( SCIPcheckStage(scip, "SCIPaddVarLocksType", FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE) );
4292 SCIP_CALL( SCIPvarAddLocks(var, scip->mem->probmem, scip->set, scip->eventqueue, locktype, nlocksdown, nlocksup) );
4303 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
4330 SCIP_CALL( SCIPcheckStage(scip, "SCIPaddVarLocks", FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE) );
4338 * this method should be called whenever the lock status of a variable in a constraint changes, for example if
4339 * the coefficient of the variable changed its sign or if the left or right hand sides of the constraint were
4342 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
4369 SCIP_CALL( SCIPcheckStage(scip, "SCIPlockVarCons", FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE) );
4413 SCIP_CALL( SCIPvarAddLocks(var, scip->mem->probmem, scip->set, scip->eventqueue, (SCIP_LOCKTYPE) i, nlocksdown[i], nlocksup[i]) );
4423 /** remove locks of type @p locktype of variable with respect to the lock status of the constraint and its negation;
4424 * this method should be called whenever the lock status of a variable in a constraint changes, for example if
4425 * the coefficient of the variable changed its sign or if the left or right hand sides of the constraint were
4428 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
4455 SCIP_CALL( SCIPcheckStage(scip, "SCIPunlockVarCons", FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE) );
4498 SCIP_CALL( SCIPvarAddLocks(var, scip->mem->probmem, scip->set, scip->eventqueue, (SCIP_LOCKTYPE) i, -nlocksdown[i], -nlocksup[i]) );
4510 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
4525 SCIP_CALL( SCIPcheckStage(scip, "SCIPchgVarObj", FALSE, TRUE, TRUE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE) );
4540 SCIP_CALL( SCIPvarChgObj(var, scip->mem->probmem, scip->set, scip->origprob, scip->primal, scip->lp, scip->eventqueue, newobj) );
4547 SCIP_CALL( SCIPvarChgObj(var, scip->mem->probmem, scip->set, scip->transprob, scip->primal, scip->lp, scip->eventqueue, newobj) );
4558 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
4574 SCIP_CALL( SCIPcheckStage(scip, "SCIPaddVarObj", FALSE, TRUE, TRUE, FALSE, FALSE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE) );
4582 SCIP_CALL( SCIPvarAddObj(var, scip->mem->probmem, scip->set, scip->stat, scip->transprob, scip->origprob, scip->primal,
4590 SCIP_CALL( SCIPvarAddObj(var, scip->mem->probmem, scip->set, scip->stat, scip->transprob, scip->origprob, scip->primal,
4600 /** returns the adjusted (i.e. rounded, if the given variable is of integral type) lower bound value;
4603 * @return adjusted lower bound for the given variable; the bound of the variable is not changed
4625 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPadjustedVarLb", FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE) );
4632 /** returns the adjusted (i.e. rounded, if the given variable is of integral type) upper bound value;
4635 * @return adjusted upper bound for the given variable; the bound of the variable is not changed
4657 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPadjustedVarUb", FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE) );
4664 /** depending on SCIP's stage, changes lower bound of variable in the problem, in preprocessing, or in current node;
4665 * if possible, adjusts bound to integral value; doesn't store any inference information in the bound change, such
4668 * @warning If SCIP is in presolving stage, it can happen that the internal variable array (which can be accessed via
4671 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
4680 * @note During presolving, an integer variable whose bound changes to {0,1} is upgraded to a binary variable.
4688 SCIP_CALL( SCIPcheckStage(scip, "SCIPchgVarLb", FALSE, TRUE, TRUE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
4696 SCIPwarningMessage(scip, "ignore lower bound tightening for %s from %e to +infinity\n", SCIPvarGetName(var),
4725 SCIP_CALL( SCIPnodeAddBoundchg(scip->tree->root, scip->mem->probmem, scip->set, scip->stat, scip->transprob,
4726 scip->origprob, scip->tree, scip->reopt, scip->lp, scip->branchcand, scip->eventqueue, scip->cliquetable,
4740 SCIP_CALL( SCIPnodeAddBoundchg(SCIPtreeGetCurrentNode(scip->tree), scip->mem->probmem, scip->set, scip->stat,
4741 scip->transprob, scip->origprob, scip->tree, scip->reopt, scip->lp, scip->branchcand, scip->eventqueue,
4754 /** depending on SCIP's stage, changes upper bound of variable in the problem, in preprocessing, or in current node;
4755 * if possible, adjusts bound to integral value; doesn't store any inference information in the bound change, such
4758 * @warning If SCIP is in presolving stage, it can happen that the internal variable array (which can be accessed via
4761 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
4770 * @note During presolving, an integer variable whose bound changes to {0,1} is upgraded to a binary variable.
4778 SCIP_CALL( SCIPcheckStage(scip, "SCIPchgVarUb", FALSE, TRUE, TRUE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
4786 SCIPwarningMessage(scip, "ignore upper bound tightening for %s from %e to -infinity\n", SCIPvarGetName(var),
4815 SCIP_CALL( SCIPnodeAddBoundchg(scip->tree->root, scip->mem->probmem, scip->set, scip->stat, scip->transprob,
4830 SCIP_CALL( SCIPnodeAddBoundchg(SCIPtreeGetCurrentNode(scip->tree), scip->mem->probmem, scip->set, scip->stat,
4831 scip->transprob, scip->origprob, scip->tree, scip->reopt, scip->lp, scip->branchcand, scip->eventqueue,
4843 /** changes lower bound of variable in the given node; if possible, adjust bound to integral value; doesn't store any
4844 * inference information in the bound change, such that in conflict analysis, this change is treated like a branching
4847 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
4859 SCIP_CALL( SCIPcheckStage(scip, "SCIPchgVarLbNode", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
4873 SCIPwarningMessage(scip, "ignore lower bound tightening for %s from %e to +infinity\n", SCIPvarGetName(var),
4879 SCIP_CALL( SCIPnodeAddBoundchg(node, scip->mem->probmem, scip->set, scip->stat, scip->transprob, scip->origprob,
4880 scip->tree, scip->reopt, scip->lp, scip->branchcand, scip->eventqueue, scip->cliquetable, var, newbound,
4887 /** changes upper bound of variable in the given node; if possible, adjust bound to integral value; doesn't store any
4888 * inference information in the bound change, such that in conflict analysis, this change is treated like a branching
4891 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
4903 SCIP_CALL( SCIPcheckStage(scip, "SCIPchgVarUbNode", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
4917 SCIPwarningMessage(scip, "ignore upper bound tightening for %s from %e to -infinity\n", SCIPvarGetName(var),
4923 SCIP_CALL( SCIPnodeAddBoundchg(node, scip->mem->probmem, scip->set, scip->stat, scip->transprob, scip->origprob,
4924 scip->tree, scip->reopt, scip->lp, scip->branchcand, scip->eventqueue, scip->cliquetable, var, newbound,
4931 /** changes global lower bound of variable; if possible, adjust bound to integral value; also tightens the local bound,
4934 * @warning If SCIP is in presolving stage, it can happen that the internal variable array (which can be accessed via
4937 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
4947 * @note During presolving, an integer variable whose bound changes to {0,1} is upgraded to a binary variable.
4955 SCIP_CALL( SCIPcheckStage(scip, "SCIPchgVarLbGlobal", FALSE, TRUE, TRUE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
4963 SCIPwarningMessage(scip, "ignore lower bound tightening for %s from %e to +infinity\n", SCIPvarGetName(var),
4992 SCIP_CALL( SCIPnodeAddBoundchg(scip->tree->root, scip->mem->probmem, scip->set, scip->stat, scip->transprob,
4993 scip->origprob, scip->tree, scip->reopt, scip->lp, scip->branchcand, scip->eventqueue, scip->cliquetable, var, newbound,
5007 SCIP_CALL( SCIPnodeAddBoundchg(scip->tree->root, scip->mem->probmem, scip->set, scip->stat, scip->transprob,
5008 scip->origprob, scip->tree, scip->reopt, scip->lp, scip->branchcand, scip->eventqueue, scip->cliquetable, var, newbound,
5020 /** changes global upper bound of variable; if possible, adjust bound to integral value; also tightens the local bound,
5023 * @warning If SCIP is in presolving stage, it can happen that the internal variable array (which can be accessed via
5026 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref