lpi_grb.c
Go to the documentation of this file.
28 /*--+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9----+----0----+----1----+----2*/
43 #if ( GRB_VERSION_MAJOR < 6 || ( GRB_VERSION_MAJOR == 7 && GRB_VERSION_MINOR == 0 && GRB_VERSION_TECHNICAL < 2 ) )
54 SCIPmessagePrintWarning((messagehdlr), "Gurobi error %d: %s\n", _restat_, GRBgeterrormsg(lpi->grbenv)); \
63 SCIPmessagePrintWarning((messagehdlr), "Gurobi error %d: %s\n", _restat_, GRBgeterrormsg((*lpi)->grbenv)); \
73 #define SCIP_DUALPACKETSIZE (sizeof(SCIP_DUALPACKET)*4) /**< each entry needs two bits of information */
75 typedef SCIP_DUALPACKET COLPACKET; /**< each column needs two bits of information (basic/on_lower/on_upper) */
77 typedef SCIP_DUALPACKET ROWPACKET; /**< each row needs two bit of information (basic/on_lower/on_upper) */
81 /* At several places we need to guarantee to have a factorization of an optimal basis and call the simplex to produce
82 * it. In a numerical perfect world, this should need no iterations. However, due to numerical inaccuracies after
84 #define GRB_REFACTORMAXITERS 50 /**< maximal number of iterations allowed for producing a refactorization of the basis */
160 SCIP_Real conditionlimit; /**< maximum condition number of LP basis counted as stable (-1.0: no limit) */
201 /* Global Gurobi environment in order to not create a new environment for each new LP. This is not thread safe. */
428 CHECK_ZERO( lpi->messagehdlr, GRBsetintattrarray(lpi->grbmodel, GRB_INT_ATTR_VBASIS, 0, ncols, lpi->cstat) );
429 CHECK_ZERO( lpi->messagehdlr, GRBsetintattrarray(lpi->grbmodel, GRB_INT_ATTR_CBASIS, 0, nrows, lpi->rstat) );
462 /* The basis information for Gurobi is negative. So we cannot use the functions in bitencode.h/c. The functions below are a modified copy. */
472 static const SCIP_DUALPACKET mask[SCIP_DUALPACKETSIZE][4] = { /* if the packet size changes, the mask has to be updated */
502 for( i = 0; i < nfull; i += (int)SCIP_DUALPACKETSIZE, inp += (int)SCIP_DUALPACKETSIZE ) /*lint !e679*/
659 SCIP_ALLOC( BMSallocBlockMemoryArray(blkmem, &(*lpistate)->packcstat, colpacketNum(ncols + nrngrows)) );
676 BMSfreeBlockMemoryArrayNull(blkmem, &(*lpistate)->packcstat, colpacketNum((*lpistate)->ncols + (*lpistate)->nrngrows));
704 CHECK_ZERO( lpi->messagehdlr, GRBgetintparam(lpi->grbenv, intparam[i], &(grbparam->intparval[i])) );
708 CHECK_ZERO( lpi->messagehdlr, GRBgetdblparam(lpi->grbenv, dblparam[i], &(grbparam->dblparval[i])) );
756 CHECK_ZERO( lpi->messagehdlr, GRBsetintparam(lpi->grbenv, intparam[i], lpi->curparam.intparval[i]) );
766 CHECK_ZERO( lpi->messagehdlr, GRBsetdblparam(lpi->grbenv, dblparam[i], lpi->curparam.dblparval[i]) );
1021 /** after restoring old LP data, need to resolve the LP to be able to retrieve correct information */
1030 CHECK_ZERO( lpi->messagehdlr, GRBsetintparam(lpi->grbenv, GRB_INT_PAR_METHOD, GRB_METHOD_DUAL) );
1037 /* modifying the LP, restoring the old LP, and loading the old basis is not enough for Gurobi to be able to return
1040 * In a numerical perfect world, GRB_REFACTORMAXITERS below should be zero. However, due to numerical inaccuracies
1045 SCIPmessagePrintWarning(lpi->messagehdlr, "Gurobi needed %d iterations to restore optimal basis.\n", (int) cnt);
1115 CHECK_ZERO( lpi->messagehdlr, GRBaddvar(lpi->grbmodel, 1, &row, &coeff, 0.0, 0.0, lpi->rngvals[i], GRB_CONTINUOUS, NULL) );
1278 int* intInfo /**< integrality array (0: continuous, 1: integer). May be NULL iff ncols is 0. */
1333 assert(sizeof(SCIP_Real) == sizeof(double)); /*lint !e506*/ /* Gurobi only works with doubles as floating points */
1334 assert(sizeof(SCIP_Bool) == sizeof(int)); /*lint !e506*/ /* Gurobi only works with ints as bools */
1362 SCIPmessagePrintWarning(messagehdlr, "Gurobi error %d: Something went wrong with creating the environment.\n", restat);
1374 CHECK_ZERO_STAR( messagehdlr, GRBnewmodel(reusegrbenv, &(*lpi)->grbmodel, name, 0, NULL, NULL, NULL, NULL, NULL) );
1382 /* Create new environment for each new instaniation; note that this involves additional work and
1393 CHECK_ZERO_STAR( messagehdlr, GRBnewmodel((*lpi)->grbenv, &(*lpi)->grbmodel, name, 0, NULL, NULL, NULL, NULL, NULL) );
1567 CHECK_ZERO( lpi->messagehdlr, GRBloadmodel(lpi->grbenv, &(lpi->grbmodel), NULL, ncols, nrows, grbobjsen, 0.0, (SCIP_Real*)obj,
1568 lpi->senarray, lpi->rhsarray, (int*)beg, cnt, (int*)ind, (SCIP_Real*)val, (SCIP_Real*)lb, (SCIP_Real*)ub, NULL, colnames, rownames) );
1610 const int* beg, /**< start index of each column in ind- and val-array, or NULL if nnonz == 0 */
1650 /**@todo Save and restore basis - currently, the basis is destroyed if we discard (and later re-add) range variables */
1655 CHECK_ZERO( lpi->messagehdlr, GRBaddvars(lpi->grbmodel, ncols, nnonz, (int*)beg, (int*)ind, (SCIP_Real*)val,
1707 /** deletes columns from LP; the new position of a column must not be greater that its old position */
1816 CHECK_ZERO( lpi->messagehdlr, GRBaddconstrs(lpi->grbmodel, nrows, nnonz, (int*)beg, (int*)ind, (SCIP_Real*)val, lpi->senarray, lpi->rhsarray, rownames) );
1914 /* For simplicity, just delete all range variables from Gurobi LP - it would suffice to only delete those
1940 /** deletes rows from SCIP_LP; the new position of a row must not be greater that its old position */
2073 CHECK_ZERO( lpi->messagehdlr, GRBnewmodel(lpi->grbenv, &(lpi->grbmodel), "", 0, NULL, NULL, NULL, NULL, NULL) );
2122 CHECK_ZERO( lpi->messagehdlr, GRBsetdblattrlist(lpi->grbmodel, GRB_DBL_ATTR_LB, ncols, (int*)ind, (SCIP_Real*)lb) );
2123 CHECK_ZERO( lpi->messagehdlr, GRBsetdblattrlist(lpi->grbmodel, GRB_DBL_ATTR_UB, ncols, (int*)ind, (SCIP_Real*)ub) );
2158 CHECK_ZERO( lpi->messagehdlr, GRBsetdblattrlist(lpi->grbmodel, GRB_DBL_ATTR_RHS, nrows, (int*)ind, lpi->rhsarray) );
2159 CHECK_ZERO( lpi->messagehdlr, GRBsetcharattrlist(lpi->grbmodel, GRB_CHAR_ATTR_SENSE, nrows, (int*)ind, lpi->senarray) );
2196 CHECK_ZERO( lpi->messagehdlr, GRBsetdblattrelement(lpi->grbmodel, GRB_DBL_ATTR_UB, ncols+rngrowidx, lpi->rngvals[rngrowidx]) );
2231 /**@todo Save and restore basis - currently, the basis is destroyed if we discard (and later re-add) range variables */
2279 SCIPdebugMessage("changing coefficient row %d, column %d in Gurobi to %g\n", row, col, newval);
2309 CHECK_ZERO( lpi->messagehdlr, GRBsetintattr(lpi->grbmodel, GRB_INT_ATTR_MODELSENSE, grbobjsen) );
2332 CHECK_ZERO( lpi->messagehdlr, GRBsetdblattrlist(lpi->grbmodel, GRB_DBL_ATTR_OBJ, ncols, (int*)ind, (SCIP_Real*)obj) );
2338 /** multiplies a row with a non-zero scalar; for negative scalars, the row's sense is switched accordingly */
2364 SCIP_CALL( SCIPlpiGetRows(lpi, row, row, &lhs, &rhs, &nnonz, &beg, lpi->indarray, lpi->valarray) );
2395 /** multiplies a column with a non-zero scalar; the objective value is multiplied with the scalar, and the bounds
2424 SCIP_CALL( SCIPlpiGetCols(lpi, col, col, &lb, &ub, &nnonz, &beg, lpi->indarray, lpi->valarray) );
2533 /** gets columns from LP problem object; the arrays have to be large enough to store all values;
2552 assert((nnonz != NULL && beg != NULL && ind != NULL && val != NULL) || (nnonz == NULL && beg == NULL && ind == NULL && val == NULL));
2565 CHECK_ZERO( lpi->messagehdlr, GRBgetdblattrarray(lpi->grbmodel, GRB_DBL_ATTR_LB, firstcol, lastcol-firstcol+1, lb) );
2566 CHECK_ZERO( lpi->messagehdlr, GRBgetdblattrarray(lpi->grbmodel, GRB_DBL_ATTR_UB, firstcol, lastcol-firstcol+1, ub) );
2572 CHECK_ZERO( lpi->messagehdlr, GRBgetvars(lpi->grbmodel, nnonz, beg, ind, val, firstcol, lastcol-firstcol+1) );
2597 assert((nnonz != NULL && beg != NULL && ind != NULL && val != NULL) || (nnonz == NULL && beg == NULL && ind == NULL && val == NULL));
2613 CHECK_ZERO( lpi->messagehdlr, GRBgetdblattrarray(lpi->grbmodel, GRB_DBL_ATTR_RHS, firstrow, lastrow-firstrow+1, lpi->rhsarray) );
2614 CHECK_ZERO( lpi->messagehdlr, GRBgetcharattrarray(lpi->grbmodel, GRB_CHAR_ATTR_SENSE, firstrow, lastrow-firstrow+1, lpi->senarray) );
2625 CHECK_ZERO( lpi->messagehdlr, GRBgetconstrs(lpi->grbmodel, nnonz, beg, ind, val, firstrow, lastrow-firstrow+1) );
2660 memmove(&ind[newnz], &ind[thebeg], ((size_t) (theend - thebeg)) * sizeof(*ind)); /*lint !e776 !e571*/
2661 memmove(&val[newnz], &val[thebeg], ((size_t) (theend - thebeg)) * sizeof(*val)); /*lint !e776 !e571*/
2679 char** colnames, /**< pointers to column names (of size at least lastcol-firstcol+1) or NULL if namestoragesize is zero */
2681 int namestoragesize, /**< size of namestorage (if 0, storageleft returns the storage needed) */
2682 int* storageleft /**< amount of storage left (if < 0 the namestorage was not big enough) or NULL if namestoragesize is zero */
2701 char** rownames, /**< pointers to row names (of size at least lastrow-firstrow+1) or NULL if namestoragesize is zero */
2703 int namestoragesize, /**< size of namestorage (if 0, -storageleft returns the storage needed) */
2704 int* storageleft /**< amount of storage left (if < 0 the namestorage was not big enough) or NULL if namestoragesize is zero */
2732 CHECK_ZERO( lpi->messagehdlr, GRBgetintattr(lpi->grbmodel, GRB_INT_ATTR_MODELSENSE, &grbobjsen) );
2755 CHECK_ZERO( lpi->messagehdlr, GRBgetdblattrarray(lpi->grbmodel, GRB_DBL_ATTR_OBJ, firstcol, lastcol-firstcol+1, vals) );
2783 CHECK_ZERO( lpi->messagehdlr, GRBgetdblattrarray(lpi->grbmodel, GRB_DBL_ATTR_LB, firstcol, lastcol-firstcol+1, lbs) );
2788 CHECK_ZERO( lpi->messagehdlr, GRBgetdblattrarray(lpi->grbmodel, GRB_DBL_ATTR_UB, firstcol, lastcol-firstcol+1, ubs) );
2812 CHECK_ZERO( lpi->messagehdlr, GRBgetdblattrarray(lpi->grbmodel, GRB_DBL_ATTR_RHS, firstrow, lastrow-firstrow+1, lpi->rhsarray) );
2813 CHECK_ZERO( lpi->messagehdlr, GRBgetcharattrarray(lpi->grbmodel, GRB_CHAR_ATTR_SENSE, firstrow, lastrow-firstrow+1, lpi->senarray) );
2887 CHECK_ZERO( lpi->messagehdlr, GRBsetintparam(lpi->grbenv, GRB_INT_PAR_METHOD, GRB_METHOD_PRIMAL) );
2910 CHECK_ZERO( lpi->messagehdlr, GRBgetintattr(lpi->grbmodel, GRB_INT_ATTR_STATUS, &lpi->solstat) );
2912 SCIPdebugMessage("Gurobi primal simplex needed %d iterations to gain LP status %d\n", (int) cnt, lpi->solstat);
2914 /* maybe the preprocessor solved the problem; but we need a solution, so solve again without preprocessing */
2924 SCIPdebugMessage("presolver may have solved the problem -> calling Gurobi primal simplex again without presolve\n");
2927 CHECK_ZERO( lpi->messagehdlr, GRBsetintparam(lpi->grbenv, GRB_INT_PAR_PRESOLVE, GRB_PRESOLVE_OFF) );
2942 CHECK_ZERO( lpi->messagehdlr, GRBgetintattr(lpi->grbmodel, GRB_INT_ATTR_STATUS, &lpi->solstat) );
2943 SCIPdebugMessage(" -> Gurobi returned solstat=%d (%d iterations)\n", lpi->solstat, lpi->iterations);
2952 SCIPerrorMessage("Gurobi primal simplex returned GRB_INF_OR_UNBD after presolving was turned off\n");
2958 /* Unbounded means that there exists an unbounded primal ray. However, this does not state whether the problem is
2972 CHECK_ZERO( lpi->messagehdlr, GRBgetdblattrarray(lpi->grbmodel, GRB_DBL_ATTR_OBJ, 0, ncols, objcoefs) );
2975 CHECK_ZERO( lpi->messagehdlr, GRBsetdblattrarray(lpi->grbmodel, GRB_DBL_ATTR_OBJ, 0, ncols, zeroobjcoefs) );
2978 CHECK_ZERO( lpi->messagehdlr, GRBgetdblparam(lpi->grbenv, GRB_DBL_PAR_CUTOFF, &oldobjcutoff) );
2980 CHECK_ZERO( lpi->messagehdlr, GRBgetintattr(lpi->grbmodel, GRB_INT_ATTR_MODELSENSE, &grbobjsen) );
2987 CHECK_ZERO( lpi->messagehdlr, GRBsetdblparam(lpi->grbenv, GRB_DBL_PAR_CUTOFF, -GRB_INFINITY) );
3001 CHECK_ZERO( lpi->messagehdlr, GRBsetdblattrarray(lpi->grbmodel, GRB_DBL_ATTR_OBJ, 0, ncols, objcoefs) );
3030 /* GRB_LOADED, GRB_NODE_LIMIT, GRB_CUTOFF, GRB_SOLUTION_LIMIT, GRB_INTERRUPTED, GRB_NUMERIC, GRB_SUBOPTIMAL, GRB_INPROGRESS, GRB_USER_OBJ_LIMIT */
3081 CHECK_ZERO( lpi->messagehdlr, GRBsetintparam(lpi->grbenv, GRB_INT_PAR_METHOD, GRB_METHOD_DUAL) );
3093 CHECK_ZERO( lpi->messagehdlr, GRBgetintparam(lpi->grbenv, "GURO_PAR_PRIMDUALSWITCH", &oldprimdual) );
3101 CHECK_ZERO( lpi->messagehdlr, GRBgetintparam(lpi->grbenv, GRB_INT_PAR_PRESOLVE, &oldpresolve) );
3104 CHECK_ZERO( lpi->messagehdlr, GRBsetintparam(lpi->grbenv, GRB_INT_PAR_PRESOLVE, GRB_PRESOLVE_OFF) );
3123 CHECK_ZERO( lpi->messagehdlr, GRBgetintattr(lpi->grbmodel, GRB_INT_ATTR_STATUS, &lpi->solstat) );
3125 SCIPdebugMessage("Gurobi dual simplex needed %d iterations to gain LP status %d\n", (int) cnt, lpi->solstat);
3134 /* maybe the preprocessor solved the problem; but we need a solution, so solve again without preprocessing */
3135 SCIPdebugMessage("presolver may have solved the problem -> calling Gurobi dual simplex again without presolve\n");
3138 CHECK_ZERO( lpi->messagehdlr, GRBsetintattr(lpi->grbmodel, GRB_INT_PAR_PRESOLVE, GRB_PRESOLVE_OFF) );
3154 CHECK_ZERO( lpi->messagehdlr, GRBgetintattr(lpi->grbmodel, GRB_INT_ATTR_STATUS, &lpi->solstat) );
3155 SCIPdebugMessage(" -> Gurobi returned solstat=%d (%d iterations)\n", lpi->solstat, lpi->iterations);
3158 CHECK_ZERO( lpi->messagehdlr, GRBsetintattr(lpi->grbmodel, GRB_INT_PAR_PRESOLVE, GRB_PRESOLVE_AUTO) );
3164 SCIPerrorMessage("Gurobi dual simplex returned GRB_INF_OR_UNBD after presolving was turned off.\n");
3174 CHECK_ZERO( lpi->messagehdlr, GRBsetintparam(lpi->grbenv, "GURO_PAR_PRIMDUALSWITCH", oldprimdual) );
3178 CHECK_ZERO( lpi->messagehdlr, GRBsetintparam(lpi->grbenv, GRB_INT_PAR_PRESOLVE, oldpresolve) );
3184 /** calls barrier or interior point algorithm to solve the LP with crossover to simplex basis */
3229 CHECK_ZERO( lpi->messagehdlr, GRBsetintparam(lpi->grbenv, GRB_INT_PAR_METHOD, GRB_METHOD_BARRIER) );
3252 CHECK_ZERO( lpi->messagehdlr, GRBgetintattr(lpi->grbmodel, GRB_INT_ATTR_STATUS, &lpi->solstat) );
3254 SCIPdebugMessage("Gurobi barrier needed %d iterations to gain LP status %d\n", (int) cnt, lpi->solstat);
3263 /* maybe the preprocessor solved the problem; but we need a solution, so solve again without preprocessing */
3264 SCIPdebugMessage("presolver may have solved the problem -> calling Gurobi barrier again without presolve\n");
3267 CHECK_ZERO( lpi->messagehdlr, GRBsetintattr(lpi->grbmodel, GRB_INT_PAR_PRESOLVE, GRB_PRESOLVE_OFF) );
3283 CHECK_ZERO( lpi->messagehdlr, GRBgetintattr(lpi->grbmodel, GRB_INT_ATTR_STATUS, &lpi->solstat) );
3284 SCIPdebugMessage(" -> Gurobi returned solstat=%d (%d iterations)\n", lpi->solstat, lpi->iterations);
3287 CHECK_ZERO( lpi->messagehdlr, GRBsetintattr(lpi->grbmodel, GRB_INT_PAR_PRESOLVE, GRB_PRESOLVE_AUTO) );
3373 CHECK_ZERO( lpi->messagehdlr, GRBgetdblattrelement(lpi->grbmodel, GRB_DBL_ATTR_LB, col, &oldlb) );
3374 CHECK_ZERO( lpi->messagehdlr, GRBgetdblattrelement(lpi->grbmodel, GRB_DBL_ATTR_UB, col, &oldub) );
3398 SCIPdebugMessage("strong branching down (%g) on x%d (%g) with %d iterations\n", newub, col, psol, itlim);
3400 CHECK_ZERO( lpi->messagehdlr, GRBsetdblattrelement(lpi->grbmodel, GRB_DBL_ATTR_UB, col, newub) );
3423 CHECK_ZERO( lpi->messagehdlr, GRBsetdblattrelement(lpi->grbmodel, GRB_DBL_ATTR_UB, col, oldub) );
3450 SCIPdebugMessage("strong branching up (%g) on x%d (%g) with %d iterations\n", newlb, col, psol, itlim);
3452 CHECK_ZERO( lpi->messagehdlr, GRBsetdblattrelement(lpi->grbmodel, GRB_DBL_ATTR_LB, col, newlb) );
3475 CHECK_ZERO( lpi->messagehdlr, GRBsetdblattrelement(lpi->grbmodel, GRB_DBL_ATTR_LB, col, oldlb) );
3565 SCIP_CALL( lpiStrongbranch(lpi, cols[j], psols[j], itlim, &(down[j]), &(up[j]), &(downvalid[j]), &(upvalid[j]), iter) );
3628 SCIP_CALL( lpiStrongbranch(lpi, cols[j], psols[j], itlim, &(down[j]), &(up[j]), &(downvalid[j]), &(upvalid[j]), iter) );
3659 * The feasibility information is with respect to the last solving call and it is only relevant if SCIPlpiWasSolved()
3662 * Note that @a primalfeasible and @a dualfeasible should only return true if the solver has proved the respective LP to
3663 * be feasible. Thus, the return values should be equal to the values of SCIPlpiIsPrimalFeasible() and
3664 * SCIPlpiIsDualFeasible(), respectively. Note that if feasibility cannot be proved, they should return false (even if
3688 /** returns TRUE iff LP is proven to have a primal unbounded ray (but not necessary a primal feasible point);
3702 /** returns TRUE iff LP is proven to have a primal unbounded ray (but not necessary a primal feasible point),
3747 /* GRB_UNBOUNDED means that there exists a primal ray. SCIPlpiSolvePrimal() will determine whether the problem is
3748 * actually infeasible or (feasible and) unbounded. In the latter case, the status will be GRB_UNBOUNDED.
3811 /* If Gurobi cannot return the constraint violation, there is no feasible solution available. */
3828 /** returns TRUE iff LP is proven to have a dual unbounded ray (but not necessary a dual feasible point);
3842 /** returns TRUE iff LP is proven to have a dual unbounded ray (but not necessary a dual feasible point),
3947 * This function should return true if the solution is reliable, i.e., feasible and optimal (or proven
3948 * infeasible/unbounded) with respect to the original problem. The optimality status might be with respect to a scaled
3949 * version of the problem, but the solution might not be feasible to the unscaled original problem; in this case,
3969 /* If the condition number of the basis should be checked, everything above the specified threshold is counted as
3983 /* if the kappa could not be computed (e.g., because we do not have a basis), we cannot check the condition */
4078 /** tries to reset the internal status of the LP solver in order to ignore an instability of the last solving call */
4124 /* return minus infinity if value not available and we reached the iteration limit (see lpi_cpx) */
4133 /* if we reached the cutoff, then OBJBOUND seems to be -infinity; we set the value to the cutoff in this case */
4138 /**@todo The following is some kind of hack which works with the current SCIP implementation and should be fixed. In
4139 * the case that the LP status is GRB_CUTOFF it might be that certain attributes cannot be queried (e.g., objval,
4140 * primal and dual solution), in this case we just return the installed cutoff value minus some epsilon. This is some
4141 * kind of hack for the code in conflict.c:7595 were some extra code handles CPLEX' FASTMIP case that is similar to
4162 * Before calling this function, the caller must ensure that the LP has been solved to optimality, i.e., that
4194 CHECK_ZERO( lpi->messagehdlr, GRBgetdblattrarray(lpi->grbmodel, GRB_DBL_ATTR_X, 0, ncols, primsol) );
4199 CHECK_ZERO( lpi->messagehdlr, GRBgetdblattrarray(lpi->grbmodel, GRB_DBL_ATTR_PI, 0, nrows, dualsol) );
4207 CHECK_ZERO( lpi->messagehdlr, GRBgetdblattrarray(lpi->grbmodel, GRB_DBL_ATTR_SLACK, 0, nrows, activity) );
4211 CHECK_ZERO( lpi->messagehdlr, GRBgetdblattrarray(lpi->grbmodel, GRB_DBL_ATTR_RHS, 0, nrows, lpi->rhsarray) );
4212 CHECK_ZERO( lpi->messagehdlr, GRBgetcharattrarray(lpi->grbmodel, GRB_CHAR_ATTR_SENSE, 0, nrows, lpi->senarray) );
4224 CHECK_ZERO( lpi->messagehdlr, GRBgetdblattrelement(lpi->grbmodel, GRB_DBL_ATTR_X, ncols + lpi->rngrowmap[i], &solval) );
4248 CHECK_ZERO( lpi->messagehdlr, GRBgetdblattrarray(lpi->grbmodel, GRB_DBL_ATTR_RC, 0, ncols, redcost) );
4272 CHECK_ZERO( lpi->messagehdlr, GRBgetdblattrarray(lpi->grbmodel, GRB_DBL_ATTR_UNBDRAY, 0, ncols, ray) );
4296 CHECK_ZERO( lpi->messagehdlr, GRBgetdblattrarray(lpi->grbmodel, GRB_DBL_ATTR_FARKASDUAL, 0, nrows, dualfarkas) );
4322 * Such information is usually only available, if also a (maybe not optimal) solution is available.
4323 * The LPI should return SCIP_INVALID for @p quality, if the requested quantity is not available.
4374 /** gets current basis status for columns and rows; arrays must be large enough to store the basis status */
4398 CHECK_ZERO( lpi->messagehdlr, GRBgetintattrarray(lpi->grbmodel, GRB_INT_ATTR_CBASIS, 0, nrows, rstat) );
4399 CHECK_ZERO( lpi->messagehdlr, GRBgetcharattrarray(lpi->grbmodel, GRB_CHAR_ATTR_SENSE, 0, nrows, lpi->senarray) );
4410 CHECK_ZERO( lpi->messagehdlr, GRBgetintattrelement(lpi->grbmodel, GRB_INT_ATTR_VBASIS, idx, &rstat[i]) );
4469 CHECK_ZERO( lpi->messagehdlr, GRBgetintattrarray(lpi->grbmodel, GRB_INT_ATTR_VBASIS, 0, ncols, cstat) );
4558 CHECK_ZERO( lpi->messagehdlr, GRBgetcharattrarray(lpi->grbmodel, GRB_CHAR_ATTR_SENSE, i, 1, &sense) );
4570 CHECK_ZERO( lpi->messagehdlr, GRBgetcharattrarray(lpi->grbmodel, GRB_CHAR_ATTR_SENSE, i, 1, &sense) );
4617 CHECK_ZERO( lpi->messagehdlr, GRBsetintattrarray(lpi->grbmodel, GRB_INT_ATTR_CBASIS, 0, nrows, lpi->rstat) );
4618 CHECK_ZERO( lpi->messagehdlr, GRBsetintattrarray(lpi->grbmodel, GRB_INT_ATTR_VBASIS, 0, ncols+lpi->nrngrows, lpi->cstat) );
4623 /** returns the indices of the basic columns and rows; basic column n gives value n, basic row m gives value -1-m */
4688 * @note The LP interface defines slack variables to have coefficient +1. This means that if, internally, the LP solver
4689 * uses a -1 coefficient, then rows associated with slacks variables whose coefficient is -1, should be negated;
4786 * @note The LP interface defines slack variables to have coefficient +1. This means that if, internally, the LP solver
4787 * uses a -1 coefficient, then rows associated with slacks variables whose coefficient is -1, should be negated;
4846 /* get basis indices: entries that correspond to slack variables with coefficient -1 must be negated */
4895 * @note The LP interface defines slack variables to have coefficient +1. This means that if, internally, the LP solver
4896 * uses a -1 coefficient, then rows associated with slacks variables whose coefficient is -1, should be negated;
4904 const SCIP_Real* binvrow, /**< row in (A_B)^-1 from prior call to SCIPlpiGetBInvRow(), or NULL */
4941 /* get basis indices, temporarily using memory of x.ind: if r corresponds to a slack variable with coefficient -1 we
4960 /* Copy sparse solution: Column indices ngrbcols and larger correspond to slack variables artificially introduced
4961 * by Gurobi; column indices ncols, ncols+1, ..., ngrbcols-1 correspond to slack variables introduced by the LPI
5008 * @note The LP interface defines slack variables to have coefficient +1. This means that if, internally, the LP solver
5009 * uses a -1 coefficient, then rows associated with slacks variables whose coefficient is -1, should be negated;
5052 /* get basis indices: entries that correspond to slack variables with coefficient -1 must be negated */
5158 /* In this case no basis information is available. Since SCIP expects the information to work in any case, we
5159 * allocate the lpistate, but do not use the packed information. This might happen if the model is infeasible,
5172 /** loads LPi state (like basis information) into solver; note that the LP might have been extended with additional
5199 SCIPdebugMessage("loading LPI state %p (%d cols, %d rows, %d ranged rows) into Gurobi LP with %d cols, %d rows, and %d ranged rows\n",
5200 (void*) lpistate, lpistate->ncols, lpistate->nrows, lpistate->nrngrows, ncols, nrows, lpi->nrngrows);
5215 memmove(&lpi->cstat[ncols], &lpi->cstat[lpistate->ncols], (size_t) lpistate->nrngrows * sizeof(*lpi->cstat)); /*lint !e571*/
5302 if ( l > 4 && fname[l-4] == '.' && fname[l-3] == 'b' && fname[l-2] == 'a' && fname[l-1] == 's' )
5331 if ( l > 4 && fname[l-4] == '.' && fname[l-3] == 'b' && fname[l-2] == 'a' && fname[l-1] == 's' )
5382 /* if there is no basis information available (e.g. after barrier without crossover), norms cannot be saved */
5391 CHECK_ZERO( lpi->messagehdlr, GRBgetintattr(lpi->grbmodel, GRB_INT_ATTR_HASDUALNORM, &hasnorm) );
5406 CHECK_ZERO( lpi->messagehdlr, GRBgetdblattrarray(lpi->grbmodel, GRB_DBL_ATTR_VDUALNORM, 0, ncols, (*lpinorms)->colnorm) );
5407 CHECK_ZERO( lpi->messagehdlr, GRBgetdblattrarray(lpi->grbmodel, GRB_DBL_ATTR_CDUALNORM, 0, nrows, (*lpinorms)->rownorm) );
5412 /** loads LPi pricing norms into solver; note that the LP might have been extended with additional
5431 error = GRBsetdblattrarray(lpi->grbmodel, GRB_DBL_ATTR_VDUALNORM, 0, lpinorms->ncols, lpinorms->colnorm);
5438 SCIPmessagePrintWarning(lpi->messagehdlr, "Warning: setting dual variable norms failed with Gurobi error %d\n", error);
5443 error = GRBsetdblattrarray(lpi->grbmodel, GRB_DBL_ATTR_CDUALNORM, 0, lpinorms->nrows, lpinorms->rownorm);
5450 SCIPmessagePrintWarning(lpi->messagehdlr, "Warning: setting dual constraint norms failed with Gurobi error %d\n", error);