scip_var.c
Go to the documentation of this file.
34 /*---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9----+----0----+----1----+----2*/
83 /** creates and captures problem variable; if variable is of integral type, fractional bounds are automatically rounded;
84 * an integer variable with bounds zero and one is automatically converted into a binary variable;
86 * @warning When doing column generation and the original problem is a maximization problem, notice that SCIP will
87 * transform the problem into a minimization problem by multiplying the objective function by -1. Thus, the
88 * original objective function value of variables created during the solving process has to be multiplied by
91 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
103 * @note the variable gets captured, hence at one point you have to release it using the method SCIPreleaseVar()
116 SCIP_DECL_VARTRANS ((*vartrans)), /**< creates transformed user data by transforming original user data, or NULL */
117 SCIP_DECL_VARDELTRANS ((*vardeltrans)), /**< frees user data of transformed variable, or NULL */
125 SCIP_CALL( SCIPcheckStage(scip, "SCIPcreateVar", FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
138 name, lb, ub, obj, vartype, initial, removable, vardelorig, vartrans, vardeltrans, varcopy, vardata) );
148 name, lb, ub, obj, vartype, initial, removable, vardelorig, vartrans, vardeltrans, varcopy, vardata) );
159 /** creates and captures problem variable with optional callbacks and variable data set to NULL, which can be set
161 * SCIPvarSetDeltransData(), SCIPvarSetCopy(), and SCIPvarSetData(); sets variable flags initial=TRUE
162 * and removable = FALSE, which can be adjusted by using SCIPvarSetInitial() and SCIPvarSetRemovable(), resp.;
164 * an integer variable with bounds zero and one is automatically converted into a binary variable;
166 * @warning When doing column generation and the original problem is a maximization problem, notice that SCIP will
167 * transform the problem into a minimization problem by multiplying the objective function by -1. Thus, the
168 * original objective function value of variables created during the solving process has to be multiplied by
171 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
183 * @note the variable gets captured, hence at one point you have to release it using the method SCIPreleaseVar()
195 SCIP_CALL( SCIPcheckStage(scip, "SCIPcreateVarBasic", FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
197 SCIP_CALL( SCIPcreateVar(scip, var, name, lb, ub, obj, vartype, TRUE, FALSE, NULL, NULL, NULL, NULL, NULL) );
204 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
231 SCIP_CALL( SCIPcheckStage(scip, "SCIPwriteVarName", FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE) );
252 SCIPvarGetType(var) == SCIP_VARTYPE_IMPLINT ? SCIP_VARTYPE_IMPLINT_CHAR : SCIP_VARTYPE_CONTINUOUS_CHAR);
258 /** print the given list of variables to output stream separated by the given delimiter character;
260 * i. e. the variables x1, x2, ..., xn with given delimiter ',' are written as: <x1>, <x2>, ..., <xn>;
264 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
294 SCIP_CALL( SCIPcheckStage(scip, "SCIPwriteVarsList", FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE) );
315 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
345 SCIP_CALL( SCIPcheckStage(scip, "SCIPwriteVarsLinearsum", FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE) );
376 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
414 SCIP_CALL( SCIPcheckStage(scip, "SCIPwriteVarsPolynomial", FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE) );
449 /** parses variable information (in cip format) out of a string; if the parsing process was successful a variable is
450 * created and captured; if variable is of integral type, fractional bounds are automatically rounded; an integer
453 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
473 SCIP_DECL_VARTRANS ((*vartrans)), /**< creates transformed user data by transforming original user data */
482 SCIP_CALL( SCIPcheckStage(scip, "SCIPparseVar", FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
487 SCIP_CALL( SCIPvarParseOriginal(var, scip->mem->probmem, scip->set, scip->messagehdlr, scip->stat,
488 str, initial, removable, varcopy, vardelorig, vartrans, vardeltrans, vardata, endptr, success) );
497 SCIP_CALL( SCIPvarParseTransformed(var, scip->mem->probmem, scip->set, scip->messagehdlr, scip->stat,
498 str, initial, removable, varcopy, vardelorig, vartrans, vardeltrans, vardata, endptr, success) );
509 /** parses the given string for a variable name and stores the variable in the corresponding pointer if such a variable
512 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
537 SCIP_CALL( SCIPcheckStage(scip, "SCIPparseVarName", FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
572 if( *str == '[' && (str[1] == SCIP_VARTYPE_BINARY_CHAR || str[1] == SCIP_VARTYPE_INTEGER_CHAR ||
573 str[1] == SCIP_VARTYPE_IMPLINT_CHAR || str[1] == SCIP_VARTYPE_CONTINUOUS_CHAR ) && str[2] == ']' )
579 /** parse the given string as variable list (here ',' is the delimiter)) (<x1>, <x2>, ..., <xn>) (see
582 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
594 * @note The pointer success in only set to FALSE in the case that a variable with a parsed variable name does not exist.
596 * @note If the number of (parsed) variables is greater than the available slots in the variable array, nothing happens
597 * except that the required size is stored in the corresponding integer; the reason for this approach is that we
598 * cannot reallocate memory, since we do not know how the memory has been allocated (e.g., by a C++ 'new' or SCIP
623 SCIP_CALL( SCIPcheckStage(scip, "SCIPparseVarsList", FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
659 /* if all variable name searches were successful and the variable array has enough slots, copy the collected variables */
678 /** parse the given string as linear sum of variables and coefficients (c1 <x1> + c2 <x2> + ... + cn <xn>)
681 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
693 * @note The pointer success in only set to FALSE in the case that a variable with a parsed variable name does not exist.
695 * @note If the number of (parsed) variables is greater than the available slots in the variable array, nothing happens
696 * except that the required size is stored in the corresponding integer; the reason for this approach is that we
697 * cannot reallocate memory, since we do not know how the memory has been allocated (e.g., by a C++ 'new' or SCIP
718 SCIP_CALL( SCIPcheckStage(scip, "SCIPparseVarsLinearsum", FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
731 SCIP_CALL( SCIPparseVarsPolynomial(scip, str, &monomialvars, &monomialexps, &monomialcoefs, &monomialnvars, &nmonomials, endptr, success) );
735 assert(nmonomials == 0); /* SCIPparseVarsPolynomial should have freed all buffers, so no need to call free here */
745 SCIPfreeParseVarsPolynomialData(scip, &monomialvars, &monomialexps, &monomialcoefs, &monomialnvars, nmonomials);
781 SCIPfreeParseVarsPolynomialData(scip, &monomialvars, &monomialexps, &monomialcoefs, &monomialnvars, nmonomials);
791 * monomialcoefs, monomialnvars, *nmonomials) short after SCIPparseVarsPolynomial to free all the
792 * allocated memory again. Do not keep the arrays created by SCIPparseVarsPolynomial around, since
795 * Parsing is stopped at the end of string (indicated by the \\0-character) or when no more monomials
798 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
853 SCIP_CALL( SCIPcheckStage(scip, "SCIPparseVarsPolynomial", FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
873 while( *str && state != SCIPPARSEPOLYNOMIAL_STATE_END && state != SCIPPARSEPOLYNOMIAL_STATE_ERROR )
901 SCIP_CALL( SCIPduplicateBufferArray(scip, &(*monomialvars)[*nmonomials], vars, nvars) ); /*lint !e866*/
902 SCIP_CALL( SCIPduplicateBufferArray(scip, &(*monomialexps)[*nmonomials], exponents, nvars) ); /*lint !e866*/
1136 /* SCIPwriteVarsPolynomial(scip, NULL, *monomialvars, *monomialexps, *monomialcoefs, *monomialnvars, *nmonomials, FALSE); */
1141 SCIPfreeParseVarsPolynomialData(scip, monomialvars, monomialexps, monomialcoefs, monomialnvars, *nmonomials);
1150 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1183 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPfreeParseVarsPolynomialData", FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
1202 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1223 SCIP_CALL( SCIPcheckStage(scip, "SCIPcaptureVar", FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE) );
1231 /** decreases usage counter of variable, if the usage pointer reaches zero the variable gets freed
1233 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1261 SCIP_CALL( SCIPcheckStage(scip, "SCIPreleaseVar", FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE) );
1282 SCIPerrorMessage("cannot release last use of original variable while the transformed problem exists\n");
1296 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1309 SCIP_CALL( SCIPcheckStage(scip, "SCIPchgVarName", FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE) );
1337 /** gets and captures transformed variable of a given variable; if the variable is not yet transformed,
1340 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1361 SCIP_CALL( SCIPcheckStage(scip, "SCIPtransformVar", FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE) );
1370 SCIP_CALL( SCIPvarTransform(var, scip->mem->probmem, scip->set, scip->stat, scip->origprob->objsense, transvar) );
1377 * if a variable of the array is not yet transformed, a new transformed variable for this variable is created;
1380 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1405 SCIP_CALL( SCIPcheckStage(scip, "SCIPtransformVars", FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE) );
1416 SCIP_CALL( SCIPvarTransform(vars[v], scip->mem->probmem, scip->set, scip->stat, scip->origprob->objsense,
1427 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1451 SCIP_CALL( SCIPcheckStage(scip, "SCIPgetTransformedVar", FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE) );
1465 * it is possible to call this method with vars == transvars, but remember that variables that are not
1468 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1496 SCIP_CALL( SCIPcheckStage(scip, "SCIPgetTransformedVars", FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE) );
1504 SCIP_CALL( SCIPvarGetTransformed(vars[v], scip->mem->probmem, scip->set, scip->stat, &transvars[v]) );
1511 /** gets negated variable x' = lb + ub - x of variable x; negated variable is created, if not yet existing;
1512 * in difference to \ref SCIPcreateVar, the negated variable must not be released (unless captured explicitly)
1514 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1537 SCIP_CALL( SCIPcheckStage(scip, "SCIPgetNegatedVar", FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE) );
1545 /** gets negated variables x' = lb + ub - x of variables x; negated variables are created, if not yet existing
1547 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1573 SCIP_CALL( SCIPcheckStage(scip, "SCIPgetNegatedVars", FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE) );
1583 /** gets a binary variable that is equal to the given binary variable, and that is either active, fixed, or
1586 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1605 SCIP_Bool* negated /**< pointer to store whether the negation of an active variable was returned */
1614 SCIP_CALL( SCIPcheckStage(scip, "SCIPgetBinvarRepresentative", FALSE, TRUE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE) );
1630 /** gets binary variables that are equal to the given binary variables, and which are either active, fixed, or
1633 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1653 SCIP_Bool* negated /**< array to store whether the negation of an active variable was returned */
1663 SCIP_CALL( SCIPcheckStage(scip, "SCIPgetBinvarRepresentatives", FALSE, TRUE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE) );
1683 /** flattens aggregation graph of multi-aggregated variable in order to avoid exponential recursion later on
1685 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1704 SCIP_CALL( SCIPcheckStage(scip, "SCIPflattenVarAggregationGraph", FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE) );
1706 SCIP_CALL( SCIPvarFlattenAggregationGraph(var, scip->mem->probmem, scip->set, scip->eventqueue) );
1711 /** Transforms a given linear sum of variables, that is a_1*x_1 + ... + a_n*x_n + c into a corresponding linear sum of
1714 * If the number of needed active variables is greater than the available slots in the variable array, nothing happens
1715 * except that the required size is stored in the corresponding variable (requiredsize). Otherwise, the active variable
1718 * The reason for this approach is that we cannot reallocate memory, since we do not know how the memory has been
1721 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1736 * @note The resulting linear sum is stored into the given variable array, scalar array, and constant. That means the
1739 * @note That method can be used to convert a single variables into variable space of active variables. Therefore call
1755 SCIP_Real* constant, /**< pointer to constant c in linear sum a_1*x_1 + ... + a_n*x_n + c which
1760 SCIP_Bool mergemultiples /**< should multiple occurrences of a var be replaced by a single coeff? */
1771 SCIP_CALL( SCIPcheckStage(scip, "SCIPgetProbvarLinearSum", FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE) );
1772 SCIP_CALL( SCIPvarGetActiveRepresentatives(scip->set, vars, scalars, nvars, varssize, constant, requiredsize, mergemultiples) );
1778 * multi-aggregated variable, scalar and constant; if the variable resolves to a fixed variable,
1779 * "scalar" will be 0.0 and the value of the sum will be stored in "constant"; a multi-aggregation
1781 * is treated like an aggregation; if the multi-aggregation constant is infinite, "scalar" will be 0.0
1783 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1810 SCIP_CALL( SCIPcheckStage(scip, "SCIPgetProbvarSum", FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE) );
1816 /** return for given variables all their active counterparts; all active variables will be pairwise different
1817 * @note It does not hold that the first output variable is the active variable for the first input variable.
1819 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1852 SCIP_CALL( SCIPcheckStage(scip, "SCIPgetActiveVars", FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE) );
1866 * @note The return value of this method should be used carefully if the dual feasibility check was explictely disabled.
1911 * @note The return value of this method should be used carefully if the dual feasibility check was explictely disabled.
1931 return SCIPvarGetImplRedcost(var, scip->set, varfixing, scip->stat, scip->transprob, scip->lp);
1993 /** returns lower bound of variable directly before or after the bound change given by the bound change index
2070 /* handle multi-aggregated variables depending on one variable only (possibly caused by SCIPvarFlattenAggregationGraph()) */
2120 return var->data.negate.constant - SCIPgetVarUbAtIndex(scip, var->negatedvar, bdchgidx, after);
2129 /** returns upper bound of variable directly before or after the bound change given by the bound change index
2206 /* handle multi-aggregated variables depending on one variable only (possibly caused by SCIPvarFlattenAggregationGraph()) */
2256 return var->data.negate.constant - SCIPgetVarLbAtIndex(scip, var->negatedvar, bdchgidx, after);
2265 /** returns lower or upper bound of variable directly before or after the bound change given by the bound change index
2285 /** returns whether the binary variable was fixed at the time given by the bound change index */
2296 /* check the current bounds first in order to decide at which bound change information we have to look
2299 return ((SCIPvarGetLbLocal(var) > 0.5 && SCIPgetVarLbAtIndex(scip, var, bdchgidx, after) > 0.5)
2316 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPgetVarSol", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
2324 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
2343 SCIP_CALL( SCIPcheckStage(scip, "SCIPgetVarSols", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
2361 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
2379 SCIP_CALL( SCIPcheckStage(scip, "SCIPclearRelaxSolVals", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
2402 * this solution can be filled by the relaxation handlers and can be used by heuristics and for separation;
2407 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
2414 * @note This method incrementally updates the objective value of the relaxation solution. If the whole solution
2415 * should be updated, using SCIPsetRelaxSolVals() instead or calling SCIPclearRelaxSolVals() before setting
2427 SCIP_CALL( SCIPcheckStage(scip, "SCIPsetRelaxSolVal", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
2439 /** sets the values of the given variables in the global relaxation solution and informs SCIP about the validity
2441 * this solution can be filled by the relaxation handlers and can be used by heuristics and for separation;
2444 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
2466 SCIP_CALL( SCIPcheckStage(scip, "SCIPsetRelaxSolVals", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
2482 /** sets the values of the variables in the global relaxation solution to the values in the given primal solution
2483 * and informs SCIP about the validity and whether the solution can be enforced via linear cuts;
2484 * the relaxation solution can be filled by the relaxation handlers and might be used by heuristics and for separation
2486 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
2507 SCIP_CALL( SCIPcheckStage(scip, "SCIPsetRelaxSolValsSol", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
2522 SCIPrelaxationSetSolObj(scip->relaxation, SCIPsolGetObj(sol, scip->set, scip->transprob, scip->origprob));
2547 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPisRelaxSolValid", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
2552 /** informs SCIP that the relaxation solution is valid and whether the relaxation can be enforced through linear cuts
2554 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
2569 SCIP_CALL( SCIPcheckStage(scip, "SCIPmarkRelaxSolValid", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
2579 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
2592 SCIP_CALL( SCIPcheckStage(scip, "SCIPmarkRelaxSolInvalid", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
2616 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPgetRelaxSolVal", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
2642 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPgetRelaxSolObj", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
2674 return (SCIPgetVarAvgCutoffs(scip, var, SCIP_BRANCHDIR_DOWNWARDS) > SCIPgetVarAvgCutoffs(scip, var, SCIP_BRANCHDIR_UPWARDS));
2680 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
2687 * @note if propagation is enabled, strong branching is not done directly on the LP, but probing nodes are created
2692 SCIP_Bool enablepropagation /**< should propagation be done before solving the strong branching LP? */
2696 SCIP_CALL( SCIPcheckStage(scip, "SCIPstartStrongbranch", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
2700 SCIPdebugMsg(scip, "starting strong branching mode%s: lpcount=%" SCIP_LONGINT_FORMAT "\n", enablepropagation ? " with propagation" : "", scip->stat->lpcount - scip->stat->nsbdivinglps);
2702 /* start probing mode to allow propagation before solving the strong branching LPs; if no propagation should be done,
2719 /* other then in SCIPstartProbing(), we do not disable collecting variable statistics during strong branching;
2723 SCIP_CALL( SCIPtreeStartProbing(scip->tree, scip->mem->probmem, scip->set, scip->lp, scip->relaxation, scip->transprob, TRUE) );
2741 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
2754 SCIP_CALL( SCIPcheckStage(scip, "SCIPendStrongbranch", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
2756 /* depending on whether the strong branching mode was started with propagation enabled or not, we end the strong
2770 /* collect all bound changes deducted during probing, which were applied at the probing root and apply them to the
2800 SCIPdebugMsg(scip, "ending strong branching with probing: %d bound changes collected\n", nbnds);
2805 /* switch back from probing to normal operation mode and restore variables and constraints to focus node */
2806 SCIP_CALL( SCIPtreeEndProbing(scip->tree, scip->reopt, scip->mem->probmem, scip->set, scip->messagehdlr, scip->stat,
2815 SCIPdebugMsg(scip, "apply probing lower bound change <%s> >= %.9g\n", SCIPvarGetName(boundchgvars[i]), bounds[i]);
2820 SCIPdebugMsg(scip, "apply probing upper bound change <%s> <= %.9g\n", SCIPvarGetName(boundchgvars[i]), bounds[i]);
2839 /** analyze the strong branching for the given variable; that includes conflict analysis for infeasible branches and
2846 SCIP_Bool* downinf, /**< pointer to store whether the downwards branch is infeasible, or NULL */
2848 SCIP_Bool* downconflict, /**< pointer to store whether a conflict constraint was created for an
2870 * because the strong branching's bound change is necessary for infeasibility, it cannot be undone;
2871 * therefore, infeasible strong branchings on non-binary variables will not produce a valid conflict constraint
2881 SCIP_CALL( SCIPconflictAnalyzeStrongbranch(scip->conflict, scip->conflictstore, scip->mem->probmem, scip->set, scip->stat,
2882 scip->transprob, scip->origprob, scip->tree, scip->reopt, scip->lp, scip->branchcand, scip->eventqueue, scip->cliquetable, col, downconflict, upconflict) );
2886 /* the strong branching results can be used to strengthen the root reduced cost information which is used for example
2889 * @note Ignore the results if the LP solution of the down (up) branch LP is smaller which should not happened by
2892 if( SCIPtreeGetCurrentDepth(scip->tree) == 0 && SCIPvarIsBinary(var) && SCIPlpIsDualReliable(scip->lp) )
2900 if( col->sbdownvalid && SCIPsetFeasCeil(scip->set, col->primsol-1.0) >= col->lb - 0.5 && lpobjval < col->sbdown )
2901 SCIPvarUpdateBestRootSol(var, scip->set, SCIPvarGetUbGlobal(var), -(col->sbdown - lpobjval), lpobjval);
2902 if( col->sbupvalid && SCIPsetFeasFloor(scip->set, col->primsol+1.0) <= col->ub + 0.5 && lpobjval < col->sbup )
2903 SCIPvarUpdateBestRootSol(var, scip->set, SCIPvarGetLbGlobal(var), col->sbup - lpobjval, lpobjval);
2911 * Before calling this method, the strong branching mode must have been activated by calling SCIPstartStrongbranch();
2912 * after strong branching was done for all candidate variables, the strong branching mode must be ended by
2913 * SCIPendStrongbranch(). Since this method does not apply domain propagation before strongbranching,
2916 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
2927 SCIP_Bool idempotent, /**< should scip's state remain the same after the call (statistics, column states...), or should it be updated ? */
2930 SCIP_Bool* downvalid, /**< stores whether the returned down value is a valid dual bound, or NULL;
2934 SCIP_Bool* downinf, /**< pointer to store whether the downwards branch is infeasible, or NULL */
2936 SCIP_Bool* downconflict, /**< pointer to store whether a conflict constraint was created for an
2953 assert(!SCIPtreeProbing(scip->tree)); /* we should not be in strong branching with propagation mode */
2956 SCIP_CALL( SCIPcheckStage(scip, "SCIPgetVarStrongbranchFrac", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
2973 SCIPerrorMessage("cannot get strong branching information on non-COLUMN variable <%s>\n", SCIPvarGetName(var));
2982 SCIPerrorMessage("cannot get strong branching information on variable <%s> not in current LP\n", SCIPvarGetName(var));
2995 SCIP_CALL( SCIPcolGetStrongbranch(col, FALSE, scip->set, scip->stat, scip->transprob, scip->lp, itlim, !idempotent, !idempotent,
2998 /* check, if the branchings are infeasible; in exact solving mode, we cannot trust the strong branching enough to
3001 if( !(*lperror) && SCIPprobAllColsInLP(scip->transprob, scip->set, scip->lp) && !scip->set->misc_exactsolve )
3028 /** create, solve, and evaluate a single strong branching child (for strong branching with propagation) */
3043 SCIP_Longint* ndomreductions, /**< pointer to store the number of domain reductions found, or NULL */
3052 SCIP_Bool* foundsol, /**< pointer to store whether a primal solution was found during strong branching */
3071 /* the down branch is infeasible due to the branching bound change; since this means that solval is not within the
3072 * bounds, this should only happen if previous strong branching calls on other variables detected bound changes which
3082 /* bound changes are applied in SCIPendStrongbranch(), which can be seen as a conflict constraint */
3093 /* the up branch is infeasible due to the branching bound change; since this means that solval is not within the
3094 * bounds, this should only happen if previous strong branching calls on other variables detected bound changes which
3104 /* bound changes are applied in SCIPendStrongbranch(), which can be seen as a conflict constraint */
3114 /* we need to ensure that we can create at least one new probing node without exceeding the maximal tree depth */
3117 /* create a new probing node for the strong branching child and apply the new bound for the variable */
3232 SCIPdebugMsg(scip, "probing LP hit %s limit\n", SCIPgetLPSolstat(scip) == SCIP_LPSOLSTAT_ITERLIMIT ? "iteration" : "time");
3234 /* we access the LPI directly, because when a time limit was hit, we cannot access objective value and dual
3235 * feasibility using the SCIPlp... methods; we should try to avoid direct calls to the LPI, but this is rather
3236 * uncritical here, because we are immediately after the SCIPsolveProbingLP() call, because we access the LPI
3249 /* we use SCIP's infinity value here because a value larger than this is counted as infeasible by SCIP */
3272 case SCIP_LPSOLSTAT_NOTSOLVED: /* should only be the case for *cutoff = TRUE or *lperror = TRUE */
3273 case SCIP_LPSOLSTAT_OBJLIMIT: /* in this case, *cutoff should be TRUE and we should not get here */
3274 case SCIP_LPSOLSTAT_INFEASIBLE: /* in this case, *cutoff should be TRUE and we should not get here */
3281 /* If columns are missing in the LP, the cutoff flag may be wrong. Therefore, we need to set it and the valid pointer
3292 SCIPdebugMsg(scip, "error during strong branching probing LP solving: status=%d\n", SCIPgetLPSolstat(scip));
3297 /* if the subproblem was feasible, we store the local bounds of the variables after propagation and (possibly)
3299 * @todo do this after propagation? should be able to get valid bounds more often, but they might be weaker
3316 /* update newlbs and newubs: take the weaker of the already stored bounds and the current local bounds */
3338 * Before calling this method, the strong branching mode must have been activated by calling SCIPstartStrongbranch();
3339 * after strong branching was done for all candidate variables, the strong branching mode must be ended by
3340 * SCIPendStrongbranch(). Since this method applies domain propagation before strongbranching, propagation has to be be
3343 * Before solving the strong branching LP, domain propagation can be performed. The number of propagation rounds
3346 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
3353 * @warning When using this method, LP banching candidates and solution values must be copied beforehand, because
3366 SCIP_Bool* downvalid, /**< stores whether the returned down value is a valid dual bound, or NULL;
3370 SCIP_Longint* ndomredsdown, /**< pointer to store the number of domain reductions down, or NULL */
3372 SCIP_Bool* downinf, /**< pointer to store whether the downwards branch is infeasible, or NULL */
3374 SCIP_Bool* downconflict, /**< pointer to store whether a conflict constraint was created for an
3411 SCIP_CALL( SCIPcheckStage(scip, "SCIPgetVarStrongbranchWithPropagation", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
3417 * If this is not the case, we may still return that the up and down dual bounds are valid, because the branching
3419 * However, we must not set the downinf or upinf pointers to TRUE based on the dual bound, because we cannot
3424 /* if maxproprounds is -2, change it to 0, which for the following calls means using the parameter settings */
3464 SCIPerrorMessage("cannot get strong branching information on non-COLUMN variable <%s>\n", SCIPvarGetName(var));
3473 SCIPerrorMessage("cannot get strong branching information on variable <%s> not in current LP\n", SCIPvarGetName(var));
3480 SCIPdebugMsg(scip, "strong branching on var <%s>: solval=%g, lb=%g, ub=%g\n", SCIPvarGetName(var), solval,
3483 /* the up branch is infeasible due to the branching bound change; since this means that solval is not within the
3484 * bounds, this should only happen if previous strong branching calls on other variables detected bound changes which
3497 /* bound changes are applied in SCIPendStrongbranch(), which can be seen as a conflict constraint */
3508 /* the down branch is infeasible due to the branching bound change; since this means that solval is not within the
3509 * bounds, this should only happen if previous strong branching calls on other variables detected bound changes which
3522 /* bound changes are applied in SCIPendStrongbranch(), which can be seen as a conflict constraint */
3533 /* We now do strong branching by creating the two potential child nodes as probing nodes and solving them one after
3534 * the other. We will stop when the first child is detected infeasible, saving the effort we would need for the
3535 * second child. Since empirically, the up child tends to be infeasible more often, we do strongbranching first on
3558 SCIP_CALL( performStrongbranchWithPropagation(scip, var, downchild, firstchild, propagate, newub, itlim, maxproprounds,
3559 down, &downvalidlocal, ndomredsdown, downconflict, lperror, vars, nvars, newlbs, newubs, &foundsol, &cutoff) );
3578 (SCIPvarGetLbLocal(var) > newub + 0.5 || SCIPconflictGetNConflicts(scip->conflict) > oldnconflicts) )
3585 /* if this is the first call, we do not regard the up branch, its valid pointer is initially set to FALSE */
3592 SCIP_CALL( performStrongbranchWithPropagation(scip, var, downchild, firstchild, propagate, newlb, itlim, maxproprounds,
3593 up, &upvalidlocal, ndomredsup, upconflict, lperror, vars, nvars, newlbs, newubs, &foundsol, &cutoff) );
3614 (SCIPvarGetUbLocal(var) < newlb - 0.5 || SCIPconflictGetNConflicts(scip->conflict) > oldnconflicts) )
3621 /* if this is the first call, we do not regard the down branch, its valid pointer is initially set to FALSE */
3640 *down, *up, downvalidlocal, upvalidlocal, scip->stat->nsbdivinglpiterations - oldniters, itlim);
3653 /** gets strong branching information on column variable x with integral LP solution value (val); that is, the down branch
3656 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
3663 * @note If the integral LP solution value is the lower or upper bound of the variable, the corresponding branch will be
3670 SCIP_Bool idempotent, /**< should scip's state remain the same after the call (statistics, column states...), or should it be updated ? */
3673 SCIP_Bool* downvalid, /**< stores whether the returned down value is a valid dual bound, or NULL;
3677 SCIP_Bool* downinf, /**< pointer to store whether the downwards branch is infeasible, or NULL */
3679 SCIP_Bool* downconflict, /**< pointer to store whether a conflict constraint was created for an
3693 SCIP_CALL( SCIPcheckStage(scip, "SCIPgetVarStrongbranchInt", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
3713 SCIPerrorMessage("cannot get strong branching information on non-COLUMN variable <%s>\n", SCIPvarGetName(var));
3722 SCIPerrorMessage("cannot get strong branching information on variable <%s> not in current LP\n", SCIPvarGetName(var));
3735 SCIP_CALL( SCIPcolGetStrongbranch(col, TRUE, scip->set, scip->stat, scip->transprob, scip->lp, itlim, !idempotent, !idempotent,
3738 /* check, if the branchings are infeasible; in exact solving mode, we cannot trust the strong branching enough to
3741 if( !(*lperror) && SCIPprobAllColsInLP(scip->transprob, scip->set, scip->lp) && !scip->set->misc_exactsolve )
3770 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
3784 SCIP_Bool* downvalid, /**< stores whether the returned down values are valid dual bounds, or NULL;
3788 SCIP_Bool* downinf, /**< array to store whether the downward branches are infeasible, or NULL */
3801 SCIP_CALL( SCIPcheckStage(scip, "SCIPgetVarsStrongbranchesFrac", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
3832 SCIPerrorMessage("cannot get strong branching information on non-COLUMN variable <%s>\n", SCIPvarGetName(var));
3843 SCIPerrorMessage("cannot get strong branching information on variable <%s> not in current LP\n", SCIPvarGetName(var));
3858 SCIP_CALL( SCIPcolGetStrongbranches(cols, nvars, FALSE, scip->set, scip->stat, scip->transprob, scip->lp, itlim,
3861 /* check, if the branchings are infeasible; in exact solving mode, we cannot trust the strong branching enough to
3864 if( !(*lperror) && SCIPprobAllColsInLP(scip->transprob, scip->set, scip->lp) && !scip->set->misc_exactsolve )
3881 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
3895 SCIP_Bool* downvalid, /**< stores whether the returned down values are valid dual bounds, or NULL;
3899 SCIP_Bool* downinf, /**< array to store whether the downward branches are infeasible, or NULL */
3914 SCIP_CALL( SCIPcheckStage(scip, "SCIPgetVarsStrongbranchesInt", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
3944 SCIPerrorMessage("cannot get strong branching information on non-COLUMN variable <%s>\n", SCIPvarGetName(var));
3955 SCIPerrorMessage("cannot get strong branching information on variable <%s> not in current LP\n", SCIPvarGetName(var));
3970 SCIP_CALL( SCIPcolGetStrongbranches(cols, nvars, TRUE, scip->set, scip->stat, scip->transprob, scip->lp, itlim,
3973 /* check, if the branchings are infeasible; in exact solving mode, we cannot trust the strong branching enough to
3976 if( !(*lperror) && SCIPprobAllColsInLP(scip->transprob, scip->set, scip->lp) && !scip->set->misc_exactsolve )
3991 /** get LP solution status of last strong branching call (currently only works for strong branching with propagation) */
4003 /** gets strong branching information on COLUMN variable of the last SCIPgetVarStrongbranch() call;
4004 * returns values of SCIP_INVALID, if strong branching was not yet called on the given variable;
4005 * keep in mind, that the returned old values may have nothing to do with the current LP solution
4007 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
4019 SCIP_Bool* downvalid, /**< stores whether the returned down value is a valid dual bound, or NULL;
4023 SCIP_Real* solval, /**< stores LP solution value of variable at the last strong branching call, or NULL */
4027 SCIP_CALL( SCIPcheckStage(scip, "SCIPgetVarStrongbranchLast", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, FALSE, FALSE, FALSE) );
4035 SCIPcolGetStrongbranchLast(SCIPvarGetCol(var), down, up, downvalid, upvalid, solval, lpobjval);
4042 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
4061 SCIP_CALL( SCIPcheckStage(scip, "SCIPsetVarStrongbranchData", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
4069 SCIPcolSetStrongbranchData(SCIPvarGetCol(var), scip->set, scip->stat, scip->lp, lpobjval, primsol,
4077 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
4093 SCIP_CALL( SCIPcheckStage(scip, "SCIPtryStrongbranchLPSol", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
4146 /** gets node number of the last node in current branch and bound run, where strong branching was used on the
4149 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
4169 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPgetVarStrongbranchNode", FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE) );
4179 /** if strong branching was already applied on the variable at the current node, returns the number of LPs solved after
4183 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
4203 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPgetVarStrongbranchLPAge", FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE) );
4215 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
4235 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPgetVarNStrongbranchs", FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE) );
4247 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
4271 SCIP_CALL( SCIPcheckStage(scip, "SCIPaddVarLocksType", FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE) );
4290 SCIP_CALL( SCIPvarAddLocks(var, scip->mem->probmem, scip->set, scip->eventqueue, locktype, nlocksdown, nlocksup) );
4301 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
4328 SCIP_CALL( SCIPcheckStage(scip, "SCIPaddVarLocks", FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE) );
4336 * this method should be called whenever the lock status of a variable in a constraint changes, for example if
4337 * the coefficient of the variable changed its sign or if the left or right hand sides of the constraint were
4340 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
4366 SCIP_CALL( SCIPcheckStage(scip, "SCIPlockVarCons", FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE) );
4410 SCIP_CALL( SCIPvarAddLocks(var, scip->mem->probmem, scip->set, scip->eventqueue, (SCIP_LOCKTYPE) i, nlocksdown[i], nlocksup[i]) );
4420 /** remove locks of type @p locktype of variable with respect to the lock status of the constraint and its negation;
4421 * this method should be called whenever the lock status of a variable in a constraint changes, for example if
4422 * the coefficient of the variable changed its sign or if the left or right hand sides of the constraint were
4425 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
4451 SCIP_CALL( SCIPcheckStage(scip, "SCIPunlockVarCons", FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE) );
4493 SCIP_CALL( SCIPvarAddLocks(var, scip->mem->probmem, scip->set, scip->eventqueue, (SCIP_LOCKTYPE) i, -nlocksdown[i], -nlocksup[i]) );
4505 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
4520 SCIP_CALL( SCIPcheckStage(scip, "SCIPchgVarObj", FALSE, TRUE, TRUE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE) );
4535 SCIP_CALL( SCIPvarChgObj(var, scip->mem->probmem, scip->set, scip->origprob, scip->primal, scip->lp, scip->eventqueue, newobj) );
4542 SCIP_CALL( SCIPvarChgObj(var, scip->mem->probmem, scip->set, scip->transprob, scip->primal, scip->lp, scip->eventqueue, newobj) );
4553 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
4569 SCIP_CALL( SCIPcheckStage(scip, "SCIPaddVarObj", FALSE, TRUE, TRUE, FALSE, FALSE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE) );
4577 SCIP_CALL( SCIPvarAddObj(var, scip->mem->probmem, scip->set, scip->stat, scip->transprob, scip->origprob, scip->primal,
4585 SCIP_CALL( SCIPvarAddObj(var, scip->mem->probmem, scip->set, scip->stat, scip->transprob, scip->origprob, scip->primal,
4595 /** returns the adjusted (i.e. rounded, if the given variable is of integral type) lower bound value;
4598 * @return adjusted lower bound for the given variable; the bound of the variable is not changed
4620 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPadjustedVarLb", FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE) );
4627 /** returns the adjusted (i.e. rounded, if the given variable is of integral type) upper bound value;
4630 * @return adjusted upper bound for the given variable; the bound of the variable is not changed
4652 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPadjustedVarUb", FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE) );
4659 /** depending on SCIP's stage, changes lower bound of variable in the problem, in preprocessing, or in current node;
4660 * if possible, adjusts bound to integral value; doesn't store any inference information in the bound change, such
4663 * @warning If SCIP is in presolving stage, it can happen that the internal variable array (which can be accessed via
4666 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
4675 * @note During presolving, an integer variable whose bound changes to {0,1} is upgraded to a binary variable.
4683 SCIP_CALL( SCIPcheckStage(scip, "SCIPchgVarLb", FALSE, TRUE, TRUE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
4691 SCIPwarningMessage(scip, "ignore lower bound tightening for %s from %e to +infinity\n", SCIPvarGetName(var),
4720 SCIP_CALL( SCIPnodeAddBoundchg(scip->tree->root, scip->mem->probmem, scip->set, scip->stat, scip->transprob,
4721 scip->origprob, scip->tree, scip->reopt, scip->lp, scip->branchcand, scip->eventqueue, scip->cliquetable,
4735 SCIP_CALL( SCIPnodeAddBoundchg(SCIPtreeGetCurrentNode(scip->tree), scip->mem->probmem, scip->set, scip->stat,
4736 scip->transprob, scip->origprob, scip->tree, scip->reopt, scip->lp, scip->branchcand, scip->eventqueue,
4749 /** depending on SCIP's stage, changes upper bound of variable in the problem, in preprocessing, or in current node;
4750 * if possible, adjusts bound to integral value; doesn't store any inference information in the bound change, such
4753 * @warning If SCIP is in presolving stage, it can happen that the internal variable array (which can be accessed via
4756 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
4765 * @note During presolving, an integer variable whose bound changes to {0,1} is upgraded to a binary variable.
4773 SCIP_CALL( SCIPcheckStage(scip, "SCIPchgVarUb", FALSE, TRUE, TRUE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
4781 SCIPwarningMessage(scip, "ignore upper bound tightening for %s from %e to -infinity\n", SCIPvarGetName(var),
4810 SCIP_CALL( SCIPnodeAddBoundchg(scip->tree->root, scip->mem->probmem, scip->set, scip->stat, scip->transprob,
4825 SCIP_CALL( SCIPnodeAddBoundchg(SCIPtreeGetCurrentNode(scip->tree), scip->mem->probmem, scip->set, scip->stat,
4826 scip->transprob, scip->origprob, scip->tree, scip->reopt, scip->lp, scip->branchcand, scip->eventqueue,
4838 /** changes lower bound of variable in the given node; if possible, adjust bound to integral value; doesn't store any
4839 * inference information in the bound change, such that in conflict analysis, this change is treated like a branching
4842 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
4854 SCIP_CALL( SCIPcheckStage(scip, "SCIPchgVarLbNode", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
4868 SCIPwarningMessage(scip, "ignore lower bound tightening for %s from %e to +infinity\n", SCIPvarGetName(var),
4874 SCIP_CALL( SCIPnodeAddBoundchg(node, scip->mem->probmem, scip->set, scip->stat, scip->transprob, scip->origprob,
4875 scip->tree, scip->reopt, scip->lp, scip->branchcand, scip->eventqueue, scip->cliquetable, var, newbound,
4882 /** changes upper bound of variable in the given node; if possible, adjust bound to integral value; doesn't store any
4883 * inference information in the bound change, such that in conflict analysis, this change is treated like a branching
4886 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
4898 SCIP_CALL( SCIPcheckStage(scip, "SCIPchgVarUbNode", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
4912 SCIPwarningMessage(scip, "ignore upper bound tightening for %s from %e to -infinity\n", SCIPvarGetName(var),
4918 SCIP_CALL( SCIPnodeAddBoundchg(node, scip->mem->probmem, scip->set, scip->stat, scip->transprob, scip->origprob,
4919 scip->tree, scip->reopt, scip->lp, scip->branchcand, scip->eventqueue, scip->cliquetable, var, newbound,
4926 /** changes global lower bound of variable; if possible, adjust bound to integral value; also tightens the local bound,
4929 * @warning If SCIP is in presolving stage, it can happen that the internal variable array (which can be accessed via
4932 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
4941 * @note During presolving, an integer variable whose bound changes to {0,1} is upgraded to a binary variable.
4949 SCIP_CALL( SCIPcheckStage(scip, "SCIPchgVarLbGlobal", FALSE, TRUE, TRUE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
4957 SCIPwarningMessage(scip, "ignore lower bound tightening for %s from %e to +infinity\n", SCIPvarGetName(var),
4985 SCIP_CALL( SCIPnodeAddBoundchg(scip->tree->root, scip->mem->probmem, scip->set, scip->stat, scip->transprob,
4986 scip->origprob, scip->tree, scip->reopt, scip->lp, scip->branchcand, scip->eventqueue, scip->cliquetable, var, newbound,
5000 SCIP_CALL( SCIPnodeAddBoundchg(scip->tree->root, scip->mem->probmem, scip->set, scip->stat, scip->transprob,
5001 scip->origprob, scip->tree, scip->reopt, scip->lp, scip->branchcand, scip->eventqueue, scip->cliquetable, var, newbound,
5013 /** changes global upper bound of variable; if possible, adjust bound to integral value; also tightens the local bound,
5016 * @warning If SCIP is in presolving stage, it can happen that the internal variable array (which can be accessed via
5019 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
5028 * @note During presolving, an integer variable whose bound changes to {0,1} is upgraded to a binary variable.