cons_linear.c
Go to the documentation of this file.
27 * @brief Constraint handler for linear constraints in their most general form, \f$lhs <= a^T x <= rhs\f$.
57/*---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9----+----0----+----1----+----2*/
98#define CONSHDLR_ENFOPRIORITY -1000000 /**< priority of the constraint handler for constraint enforcing */
99#define CONSHDLR_CHECKPRIORITY -1000000 /**< priority of the constraint handler for checking feasibility */
100#define CONSHDLR_SEPAFREQ 0 /**< frequency for separating cuts; zero means to separate only in the root node */
101#define CONSHDLR_PROPFREQ 1 /**< frequency for propagating domains; zero means only preprocessing propagation */
102#define CONSHDLR_EAGERFREQ 100 /**< frequency for using all instead of only the useful constraints in separation,
104#define CONSHDLR_MAXPREROUNDS -1 /**< maximal number of presolving rounds the constraint handler participates in (-1: no limit) */
105#define CONSHDLR_DELAYSEPA FALSE /**< should separation method be delayed, if other separators found cuts? */
106#define CONSHDLR_DELAYPROP FALSE /**< should propagation method be delayed, if other propagators found reductions? */
107#define CONSHDLR_NEEDSCONS TRUE /**< should the constraint handler be skipped, if no constraints are available? */
109#define CONSHDLR_PRESOLTIMING (SCIP_PRESOLTIMING_FAST | SCIP_PRESOLTIMING_EXHAUSTIVE) /**< presolving timing of the constraint handler (fast, medium, or exhaustive) */
119#define DEFAULT_TIGHTENBOUNDSFREQ 1 /**< multiplier on propagation frequency, how often the bounds are tightened */
121#define DEFAULT_MAXROUNDSROOT -1 /**< maximal number of separation rounds in the root node (-1: unlimited) */
123#define DEFAULT_MAXSEPACUTSROOT 200 /**< maximal number of cuts separated per separation round in root node */
124#define DEFAULT_PRESOLPAIRWISE TRUE /**< should pairwise constraint comparison be performed in presolving? */
125#define DEFAULT_PRESOLUSEHASHING TRUE /**< should hash table be used for detecting redundant constraints in advance */
126#define DEFAULT_NMINCOMPARISONS 200000 /**< number for minimal pairwise presolving comparisons */
127#define DEFAULT_MINGAINPERNMINCOMP 1e-06 /**< minimal gain per minimal pairwise presolving comparisons to repeat pairwise
129#define DEFAULT_SORTVARS TRUE /**< should variables be sorted after presolve w.r.t their coefficient absolute for faster
131#define DEFAULT_CHECKRELMAXABS FALSE /**< should the violation for a constraint with side 0.0 be checked relative
133#define DEFAULT_MAXAGGRNORMSCALE 0.0 /**< maximal allowed relative gain in maximum norm for constraint aggregation
135#define DEFAULT_MAXEASYACTIVITYDELTA 1e6 /**< maximum activity delta to run easy propagation on linear constraint
137#define DEFAULT_MAXCARDBOUNDDIST 0.0 /**< maximal relative distance from current node's dual bound to primal bound compared
139#define DEFAULT_SEPARATEALL FALSE /**< should all constraints be subject to cardinality cut generation instead of only
141#define DEFAULT_AGGREGATEVARIABLES TRUE /**< should presolving search for redundant variables in equations */
144#define DEFAULT_SINGLETONSTUFFING TRUE /**< should stuffing of singleton continuous variables be performed? */
145#define DEFAULT_SINGLEVARSTUFFING FALSE /**< should single variable stuffing be performed, which tries to fulfill
147#define DEFAULT_DETECTCUTOFFBOUND TRUE /**< should presolving try to detect constraints parallel to the objective
150#define DEFAULT_DETECTLOWERBOUND TRUE /**< should presolving try to detect constraints parallel to the objective
153#define DEFAULT_DETECTPARTIALOBJECTIVE TRUE/**< should presolving try to detect subsets of constraints parallel to the
156#define DEFAULT_RANGEDROWARTCONS TRUE /**< should presolving and propagation extract sub-constraints from ranged rows and equations? */
160#define DEFAULT_MULTAGGRREMOVE FALSE /**< should multi-aggregations only be performed if the constraint can be
162#define DEFAULT_MAXMULTAGGRQUOT 1e+03 /**< maximum coefficient dynamism (ie. maxabsval / minabsval) for multiaggregation */
163#define DEFAULT_MAXDUALMULTAGGRQUOT 1e+20 /**< maximum coefficient dynamism (ie. maxabsval / minabsval) for multiaggregation */
168#define MAXSCALEDCOEFINTEGER 0 /**< maximal coefficient value after scaling if all variables are of integral
175#define MAXVALRECOMP 1e+06 /**< maximal abolsute value we trust without recomputing the activity */
176#define MINVALRECOMP 1e-05 /**< minimal abolsute value we trust without recomputing the activity */
179#define NONLINCONSUPGD_PRIORITY 1000000 /**< priority of the constraint handler for upgrading of expressions constraints */
181/* @todo add multi-aggregation of variables that are in exactly two equations (, if not numerically an issue),
193 QUAD_MEMBER(SCIP_Real minactivity); /**< minimal value w.r.t. the variable's local bounds for the constraint's
195 QUAD_MEMBER(SCIP_Real maxactivity); /**< maximal value w.r.t. the variable's local bounds for the constraint's
201 QUAD_MEMBER(SCIP_Real glbminactivity); /**< minimal value w.r.t. the variable's global bounds for the constraint's
203 QUAD_MEMBER(SCIP_Real glbmaxactivity); /**< maximal value w.r.t. the variable's global bounds for the constraint's
205 SCIP_Real lastglbminactivity; /**< last global minimal activity which was computed by complete summation
207 SCIP_Real lastglbmaxactivity; /**< last global maximal activity which was computed by complete summation
209 SCIP_Real maxactdelta; /**< maximal activity contribution of a single variable, or SCIP_INVALID if invalid */
210 SCIP_VAR* maxactdeltavar; /**< variable with maximal activity contribution, or NULL if invalid */
218 int minactivityneginf; /**< number of coefficients contributing with neg. infinite value to minactivity */
219 int minactivityposinf; /**< number of coefficients contributing with pos. infinite value to minactivity */
220 int maxactivityneginf; /**< number of coefficients contributing with neg. infinite value to maxactivity */
221 int maxactivityposinf; /**< number of coefficients contributing with pos. infinite value to maxactivity */
222 int minactivityneghuge; /**< number of coefficients contributing with huge neg. value to minactivity */
223 int minactivityposhuge; /**< number of coefficients contributing with huge pos. value to minactivity */
224 int maxactivityneghuge; /**< number of coefficients contributing with huge neg. value to maxactivity */
225 int maxactivityposhuge; /**< number of coefficients contributing with huge pos. value to maxactivity */
226 int glbminactivityneginf;/**< number of coefficients contrib. with neg. infinite value to glbminactivity */
227 int glbminactivityposinf;/**< number of coefficients contrib. with pos. infinite value to glbminactivity */
228 int glbmaxactivityneginf;/**< number of coefficients contrib. with neg. infinite value to glbmaxactivity */
229 int glbmaxactivityposinf;/**< number of coefficients contrib. with pos. infinite value to glbmaxactivity */
230 int glbminactivityneghuge;/**< number of coefficients contrib. with huge neg. value to glbminactivity */
231 int glbminactivityposhuge;/**< number of coefficients contrib. with huge pos. value to glbminactivity */
232 int glbmaxactivityneghuge;/**< number of coefficients contrib. with huge neg. value to glbmaxactivity */
233 int glbmaxactivityposhuge;/**< number of coefficients contrib. with huge pos. value to glbmaxactivity */
240 unsigned int rangedrowpropagated:2; /**< did we perform ranged row propagation on this constraint?
252 unsigned int changed:1; /**< was constraint changed since last aggregation round in preprocessing? */
255 unsigned int upgraded:1; /**< is the constraint upgraded and will it be removed after preprocessing? */
260 unsigned int coefsorted:1; /**< are variables sorted by type and their absolute activity delta? */
262 unsigned int hascontvar:1; /**< does the constraint contain at least one continuous variable? */
263 unsigned int hasnonbinvar:1; /**< does the constraint contain at least one non-binary variable? */
264 unsigned int hasnonbinvalid:1; /**< is the information stored in hasnonbinvar and hascontvar valid? */
265 unsigned int checkabsolute:1; /**< should the constraint be checked w.r.t. an absolute feasibilty tolerance? */
280 SCIP_LINCONSUPGRADE** linconsupgrades; /**< linear constraint upgrade methods for specializing linear constraints */
281 SCIP_Real maxaggrnormscale; /**< maximal allowed relative gain in maximum norm for constraint aggregation
283 SCIP_Real maxcardbounddist; /**< maximal relative distance from current node's dual bound to primal bound compared
285 SCIP_Real mingainpernmincomp; /**< minimal gain per minimal pairwise presolving comparisons to repeat pairwise comparison round */
286 SCIP_Real maxeasyactivitydelta;/**< maximum activity delta to run easy propagation on linear constraint
290 int tightenboundsfreq; /**< multiplier on propagation frequency, how often the bounds are tightened */
297 SCIP_Bool presolpairwise; /**< should pairwise constraint comparison be performed in presolving? */
298 SCIP_Bool presolusehashing; /**< should hash table be used for detecting redundant constraints in advance */
299 SCIP_Bool separateall; /**< should all constraints be subject to cardinality cut generation instead of only
301 SCIP_Bool aggregatevariables; /**< should presolving search for redundant variables in equations */
302 SCIP_Bool simplifyinequalities;/**< should presolving try to cancel down or delete coefficients in inequalities */
304 SCIP_Bool singletonstuffing; /**< should stuffing of singleton continuous variables be performed? */
305 SCIP_Bool singlevarstuffing; /**< should single variable stuffing be performed, which tries to fulfill
308 SCIP_Bool checkrelmaxabs; /**< should the violation for a constraint with side 0.0 be checked relative
310 SCIP_Bool detectcutoffbound; /**< should presolving try to detect constraints parallel to the objective
313 SCIP_Bool detectlowerbound; /**< should presolving try to detect constraints parallel to the objective
316 SCIP_Bool detectpartialobjective;/**< should presolving try to detect subsets of constraints parallel to
318 SCIP_Bool rangedrowpropagation;/**< should presolving and propagation try to improve bounds, detect
321 SCIP_Bool rangedrowartcons; /**< should presolving and propagation extract sub-constraints from ranged rows and equations?*/
324 SCIP_Bool multaggrremove; /**< should multi-aggregations only be performed if the constraint can be
326 SCIP_Real maxmultaggrquot; /**< maximum coefficient dynamism (ie. maxabsval / minabsval) for primal multiaggregation */
327 SCIP_Real maxdualmultaggrquot;/**< maximum coefficient dynamism (ie. maxabsval / minabsval) for dual multiaggregation */
350 PROPRULE_1_RANGEDROW = 3, /**< fixed variables and gcd of all left variables tighten bounds of a
353};
430/** constructs an inference information out of a propagation rule and a position number, returns info as int */
462 SCIP_CALL( SCIPreallocBlockMemoryArray(scip, &conshdlrdata->linconsupgrades, conshdlrdata->linconsupgradessize, newsize) );
491 SCIP_CALL( SCIPreallocBlockMemoryArray(scip, &consdata->eventdata, consdata->varssize, newsize) );
581 SCIPfreeBlockMemoryArrayNull(scip, &(*conshdlrdata)->linconsupgrades, (*conshdlrdata)->linconsupgradessize);
607 SCIPwarningMessage(scip, "Try to add already known upgrade message for constraint handler %s.\n", conshdlrname);
630 SCIP_CALL( conshdlrdataEnsureLinconsupgradesSize(scip, conshdlrdata, conshdlrdata->nlinconsupgrades+1) );
648/** installs rounding locks for the given variable associated to the given coefficient in the linear constraint */
681/** removes rounding locks for the given variable associated to the given coefficient in the linear constraint */
924 if( SCIPisConsCompressionEnabled(scip) && SCIPisEQ(scip, SCIPvarGetLbGlobal(var), SCIPvarGetUbGlobal(var)) )
960 /* due to compressed copying, we may have fixed variables contributing to the left and right hand side */
1032 SCIP_CALL( SCIPgetTransformedVars(scip, (*consdata)->nvars, (*consdata)->vars, (*consdata)->vars) );
1118 SCIP_CALL( SCIPwriteVarsLinearsum(scip, file, consdata->vars, consdata->vals, consdata->nvars, TRUE) );
1151 SCIPmessageFPrintInfo(SCIPgetMessagehdlr(scip), file, " [%s] <%s>: ", SCIPconshdlrGetName(SCIPconsGetHdlr(cons)), SCIPconsGetName(cons));
1319 bound = (consdata->vals[i] > 0.0 ) ? SCIPvarGetLbLocal(consdata->vars[i]) : SCIPvarGetUbLocal(consdata->vars[i]);
1321 && !SCIPisHugeValue(scip, consdata->vals[i] * bound) && !SCIPisHugeValue(scip, -consdata->vals[i] * bound) )
1346 bound = (consdata->vals[i] > 0.0 ) ? SCIPvarGetUbLocal(consdata->vars[i]) : SCIPvarGetLbLocal(consdata->vars[i]);
1348 && !SCIPisHugeValue(scip, consdata->vals[i] * bound) && !SCIPisHugeValue(scip, -consdata->vals[i] * bound) )
1373 bound = (consdata->vals[i] > 0.0 ) ? SCIPvarGetLbGlobal(consdata->vars[i]) : SCIPvarGetUbGlobal(consdata->vars[i]);
1375 && !SCIPisHugeValue(scip, consdata->vals[i] * bound) && !SCIPisHugeValue(scip, -consdata->vals[i] * bound) )
1376 SCIPquadprecSumQD(consdata->glbminactivity, consdata->glbminactivity, consdata->vals[i] * bound);
1400 bound = (consdata->vals[i] > 0.0 ) ? SCIPvarGetUbGlobal(consdata->vars[i]) : SCIPvarGetLbGlobal(consdata->vars[i]);
1402 && !SCIPisHugeValue(scip, consdata->vals[i] * bound) && !SCIPisHugeValue(scip, -consdata->vals[i] * bound) )
1403 SCIPquadprecSumQD(consdata->glbmaxactivity, consdata->glbmaxactivity, consdata->vals[i] * bound);
1466/** checks the type of all variables of the constraint and sets hasnonbinvar and hascontvar flags accordingly */
1613 SCIP_Bool checkreliability /**< should the reliability of the recalculated activity be checked? */
1665 * lower bound + neg. coef: update maxactivity, positive and negative infinity counters have to be switched
1667 * upper bound + neg. coef: update minactivity, positive and negative infinity counters have to be switched
1721 * lower bound + neg. coef: update maxactivity, positive and negative infinity counters have to be switched
1723 * upper bound + neg. coef: update minactivity, positive and negative infinity counters have to be switched
1791 /* if the bound changed to -infinity, increase the counter for negative infinite contributions */
1819 /* if the bound changed to +infinity, increase the counter for positive infinite contributions */
1844 * but checking here that the bound is not huge again would not handle a change from a huge to an infinite bound
1850 /* if the bound changed to +infinity, increase the counter for positive infinite contributions */
1853 /* if the bound changed to -infinity, increase the counter for negative infinite contributions */
1859 /* if the contribution of this variable is too large and positive, increase the corresponding counter */
1862 /* if the contribution of this variable is too large and negative, increase the corresponding counter */
1877 * but checking here that the bound is not huge again would not handle a change from a huge to an infinite bound
1883 /* if the bound changed to +infinity, increase the counter for positive infinite contributions */
1886 /* if the bound changed to -infinity, increase the counter for negative infinite contributions */
1892 /* if the contribution of this variable is too large and positive, increase the corresponding counter */
1895 /* if the contribution of this variable is too large and negative, increase the corresponding counter */
1950 /* update the activity, if the current value is valid and there was a change in the finite part */
2003 SCIP_Bool checkreliability /**< should the reliability of the recalculated activity be checked? */
2012 consdataUpdateActivities(scip, consdata, var, oldlb, newlb, val, SCIP_BOUNDTYPE_LOWER, FALSE, checkreliability);
2014 assert(!SCIPisInfinity(scip, -QUAD_TO_DBL(consdata->minactivity)) && !SCIPisInfinity(scip, QUAD_TO_DBL(consdata->minactivity)));
2015 assert(!SCIPisInfinity(scip, -QUAD_TO_DBL(consdata->maxactivity)) && !SCIPisInfinity(scip, QUAD_TO_DBL(consdata->maxactivity)));
2028 SCIP_Bool checkreliability /**< should the reliability of the recalculated activity be checked? */
2037 consdataUpdateActivities(scip, consdata, var, oldub, newub, val, SCIP_BOUNDTYPE_UPPER, FALSE, checkreliability);
2039 assert(!SCIPisInfinity(scip, -QUAD_TO_DBL(consdata->minactivity)) && !SCIPisInfinity(scip, QUAD_TO_DBL(consdata->minactivity)));
2040 assert(!SCIPisInfinity(scip, -QUAD_TO_DBL(consdata->maxactivity)) && !SCIPisInfinity(scip, QUAD_TO_DBL(consdata->maxactivity)));
2052 SCIP_Bool checkreliability /**< should the reliability of the recalculated activity be checked? */
2060 consdataUpdateActivities(scip, consdata, NULL, oldlb, newlb, val, SCIP_BOUNDTYPE_LOWER, TRUE, checkreliability);
2062 assert(!SCIPisInfinity(scip, -QUAD_TO_DBL(consdata->glbminactivity)) && !SCIPisInfinity(scip, QUAD_TO_DBL(consdata->glbminactivity)));
2063 assert(!SCIPisInfinity(scip, -QUAD_TO_DBL(consdata->glbmaxactivity)) && !SCIPisInfinity(scip, QUAD_TO_DBL(consdata->glbmaxactivity)));
2075 SCIP_Bool checkreliability /**< should the reliability of the recalculated activity be checked? */
2083 consdataUpdateActivities(scip, consdata, NULL, oldub, newub, val, SCIP_BOUNDTYPE_UPPER, TRUE, checkreliability);
2085 assert(!SCIPisInfinity(scip, -QUAD_TO_DBL(consdata->glbminactivity)) && !SCIPisInfinity(scip, QUAD_TO_DBL(consdata->glbminactivity)));
2086 assert(!SCIPisInfinity(scip, -QUAD_TO_DBL(consdata->glbmaxactivity)) && !SCIPisInfinity(scip, QUAD_TO_DBL(consdata->glbmaxactivity)));
2097 SCIP_Bool checkreliability /**< should the reliability of the recalculated activity be checked? */
2135 consdataUpdateActivitiesLb(scip, consdata, var, 0.0, SCIPvarGetLbLocal(var), val, checkreliability);
2136 consdataUpdateActivitiesUb(scip, consdata, var, 0.0, SCIPvarGetUbLocal(var), val, checkreliability);
2137 consdataUpdateActivitiesGlbLb(scip, consdata, 0.0, SCIPvarGetLbGlobal(var), val, checkreliability);
2138 consdataUpdateActivitiesGlbUb(scip, consdata, 0.0, SCIPvarGetUbGlobal(var), val, checkreliability);
2166/** updates minimum and maximum activity for coefficient deletion, invalidates maximum absolute value if necessary */
2173 SCIP_Bool checkreliability /**< should the reliability of the recalculated activity be checked? */
2217 consdataUpdateActivitiesLb(scip, consdata, var, SCIPvarGetLbLocal(var), 0.0, val, checkreliability);
2218 consdataUpdateActivitiesUb(scip, consdata, var, SCIPvarGetUbLocal(var), 0.0, val, checkreliability);
2219 consdataUpdateActivitiesGlbLb(scip, consdata, SCIPvarGetLbGlobal(var), 0.0, val, checkreliability);
2220 consdataUpdateActivitiesGlbUb(scip, consdata, SCIPvarGetUbGlobal(var), 0.0, val, checkreliability);
2223 /* reset maximum activity delta so that it will be recalculated on the next real propagation */
2231/** updates minimum and maximum activity for coefficient change, invalidates maximum absolute value if necessary */
2239 SCIP_Bool checkreliability /**< should the reliability of the recalculated activity be checked? */
2242 /* @todo do something more clever here, e.g. if oldval * newval >= 0, do the update directly */
2341/** gets minimal activity for constraint and given values of counters for infinite and huge contributions
2342 * and (if needed) delta to subtract from stored finite part of activity in case of a residual activity
2355 SCIP_Bool goodrelax, /**< should a good relaxation be computed or are relaxed acticities ignored, anyway? */
2359 SCIP_Bool* issettoinfinity /**< pointer to store whether minactivity was set to infinity or calculated */
2386 /* if we have neg. huge contributions or do not need a good relaxation, we just return -infty as minactivity */
2418 /* we have no infinite and no neg. huge contributions, but pos. huge contributions; a feasible relaxation of the
2419 * minactivity is given by adding the number of positive huge contributions times the huge value
2436/** gets maximal activity for constraint and given values of counters for infinite and huge contributions
2437 * and (if needed) delta to subtract from stored finite part of activity in case of a residual activity
2450 SCIP_Bool goodrelax, /**< should a good relaxation be computed or are relaxed acticities ignored, anyway? */
2454 SCIP_Bool* issettoinfinity /**< pointer to store whether maxactivity was set to infinity or calculated */
2481 /* if we have pos. huge contributions or do not need a good relaxation, we just return +infty as maxactivity */
2513 /* we have no infinite and no pos. huge contributions, but neg. huge contributions; a feasible relaxation of the
2514 * maxactivity is given by subtracting the number of negative huge contributions times the huge value
2544 SCIP_Bool* isminsettoinfinity, /**< pointer to store whether minactivity was set to infinity or calculated */
2545 SCIP_Bool* ismaxsettoinfinity /**< pointer to store whether maxactivity was set to infinity or calculated */
2674 SCIP_Bool* isminsettoinfinity, /**< pointer to store whether minresactivity was set to infinity or calculated */
2675 SCIP_Bool* ismaxsettoinfinity /**< pointer to store whether maxresactivity was set to infinity or calculated */
2723 /* get/compute minactivity by calling getMinActivity() with updated counters for infinite and huge values
2724 * and contribution of variable set to zero that has to be subtracted from finite part of activity
2761 consdata->minactivityposhuge, consdata->minactivityneghuge, absval * minactbound, FALSE, goodrelax,
2765 /* get/compute maxactivity by calling getMaxActivity() with updated counters for infinite and huge values
2766 * and contribution of variable set to zero that has to be subtracted from finite part of activity
2803 consdata->maxactivityposhuge, consdata->maxactivityneghuge, absval * maxactbound, FALSE, goodrelax,
2815 SCIP_Real* glbminactivity, /**< pointer to store the minimal activity, or NULL, if not needed */
2816 SCIP_Real* glbmaxactivity, /**< pointer to store the maximal activity, or NULL, if not needed */
2821 SCIP_Bool* isminsettoinfinity, /**< pointer to store whether minresactivity was set to infinity or calculated */
2822 SCIP_Bool* ismaxsettoinfinity /**< pointer to store whether maxresactivity was set to infinity or calculated */
2877 SCIP_Real* minresactivity, /**< pointer to store the minimal residual activity, or NULL, if not needed */
2878 SCIP_Real* maxresactivity, /**< pointer to store the maximal residual activity, or NULL, if not needed */
2883 SCIP_Bool* isminsettoinfinity, /**< pointer to store whether minresactivity was set to infinity or calculated */
2884 SCIP_Bool* ismaxsettoinfinity /**< pointer to store whether maxresactivity was set to infinity or calculated */
2926 /* get/compute minactivity by calling getMinActivity() with updated counters for infinite and huge values
2927 * and contribution of variable set to zero that has to be subtracted from finite part of activity
2933 getMinActivity(scip, consdata, consdata->glbminactivityposinf - 1, consdata->glbminactivityneginf,
2941 getMinActivity(scip, consdata, consdata->glbminactivityposinf, consdata->glbminactivityneginf - 1,
2974 /* get/compute maxactivity by calling getMaxActivity() with updated counters for infinite and huge values
2975 * and contribution of variable set to zero that has to be subtracted from finite part of activity
2981 getMaxActivity(scip, consdata, consdata->glbmaxactivityposinf, consdata->glbmaxactivityneginf - 1,
2989 getMaxActivity(scip, consdata, consdata->glbmaxactivityposinf - 1, consdata->glbmaxactivityneginf,
3054 else if( (SCIPisInfinity(scip, solval) && negsign) || (SCIPisInfinity(scip, -solval) && !negsign) )
3061 SCIPdebugMsg(scip, "activity of linear constraint: %.15g, %d positive infinity values, %d negative infinity values \n", activity, nposinf, nneginf);
3150/** index comparison method of linear constraints: compares two indices of the variable set in the linear constraint */
3177 SCIP_VARTYPE vartype1 = SCIPvarIsImpliedIntegral(var1) ? SCIP_DEPRECATED_VARTYPE_IMPLINT : SCIPvarGetType(var1);
3178 SCIP_VARTYPE vartype2 = SCIPvarIsImpliedIntegral(var2) ? SCIP_DEPRECATED_VARTYPE_IMPLINT : SCIPvarGetType(var2);
3189/** index comparison method of linear constraints: compares two indices of the variable set in the linear constraint */
3224 SCIP_VARTYPE vartype1 = SCIPvarIsImpliedIntegral(var1) ? SCIP_DEPRECATED_VARTYPE_IMPLINT : SCIPvarGetType(var1);
3225 SCIP_VARTYPE vartype2 = SCIPvarIsImpliedIntegral(var2) ? SCIP_DEPRECATED_VARTYPE_IMPLINT : SCIPvarGetType(var2);
3245 SCIP_Real abscont1 = REALABS(consdata->vals[ind1] * (SCIPvarGetUbGlobal(var1) - SCIPvarGetLbGlobal(var1)));
3246 SCIP_Real abscont2 = REALABS(consdata->vals[ind2] * (SCIPvarGetUbGlobal(var2) - SCIPvarGetLbGlobal(var2)));
3330 * sorts variables of the remaining problem by binary, integer, implied integral, and continuous variables,
3453 /* the left hand side switched from -infinity to a non-infinite value -> install rounding locks */
3478 /* the left hand side switched from a non-infinite value to -infinity -> remove rounding locks */
3499 /* check whether the left hand side is increased, if and only if that's the case we maybe can propagate, tighten and add more cliques */
3583 /* the right hand side switched from infinity to a non-infinite value -> install rounding locks */
3608 /* the right hand side switched from a non-infinite value to infinity -> remove rounding locks */
3629 /* check whether the right hand side is decreased, if and only if that's the case we maybe can propagate, tighten and add more cliques */
3677 assert(!SCIPvarIsRelaxationOnly(var) || (!SCIPconsIsChecked(cons) && !SCIPconsIsEnforced(cons)));
3762 consdata->indexsorted = consdata->indexsorted && (consdataCompVar((void*)consdata, consdata->nvars-2, consdata->nvars-1) <= 0);
3768 consdata->coefsorted = consdata->coefsorted && (consdataCompVarProp((void*)consdata, consdata->nvars-2, consdata->nvars-1) <= 0);
3860 /* if at most one variable is left, the activities should be recalculated (to correspond exactly to the bounds
4020 SCIPwarningMessage(scip, "skipped scaling for linear constraint <%s> to avoid numerical troubles (scalar: %.15g)\n",
4031 /* because SCIPisScalingIntegral uses another integrality check as SCIPfeasFloor, we add an additional 0.5 before
4039 SCIPwarningMessage(scip, "coefficient %.15g of variable <%s> in linear constraint <%s> scaled to zero (scalar: %.15g)\n",
4061 /* because SCIPisScalingIntegral uses another integrality check as SCIPfeasFloor, we add an additional 0.5 before
4073 /* because SCIPisScalingIntegral uses another integrality check as SCIPfeasCeil, we subtract 0.5 before ceiling up
4135 * Apply the following rules in the given order, until the sign of the factor is determined. Later rules only apply,
4140 * 4. the number of positive coefficients must not be smaller than the number of negative coefficients
4143 * Try to identify a rational representation of the fractional coefficients, and multiply all coefficients
4215 if( !SCIPisInfinity(scip, consdata->lhs) && SCIPisFeasZero(scip, consdata->lhs) != SCIPisFeasZero(scip, consdata->lhs/maxabsval) )
4217 if( !SCIPisInfinity(scip, consdata->rhs) && SCIPisFeasZero(scip, consdata->rhs) != SCIPisFeasZero(scip, consdata->rhs/maxabsval) )
4233 SCIPdebugMsg(scip, "divide linear constraint with %g, because all coefficients are in absolute value the same\n", maxabsval);
4260 epsilon = SCIPepsilon(scip) * 0.9; /* slightly decrease epsilon to be safe in rational conversion below */
4272 maxmult = MIN(maxmult, (SCIP_Longint) (MAXSCALEDCOEFINTEGER / MAX(maxabsval, 1.0))); /*lint !e835*/
4298 /* 3. the absolute value of the right hand side must be greater than that of the left hand side */
4307 /* 4. the number of positive coefficients must not be smaller than the number of negative coefficients */
4360 /* it might be that we have really big coefficients, but all are integral, in that case we want to divide them by
4380 SCIPdebugMsg(scip, "scale linear constraint with %" SCIP_LONGINT_FORMAT " to make coefficients integral\n", scm);
4429 /* since the lhs/rhs is not respected for gcd calculation it can happen that we detect infeasibility */
4432 if( SCIPisEQ(scip, consdata->lhs, consdata->rhs) && !SCIPisFeasIntegral(scip, consdata->rhs / gcd) )
4436 SCIPdebugMsg(scip, "detected infeasibility of constraint after scaling with gcd=%" SCIP_LONGINT_FORMAT ":\n", gcd);
4444 SCIPdebugMsg(scip, "divide linear constraint by greatest common divisor %" SCIP_LONGINT_FORMAT "\n", gcd);
4574 /* if an unmodifiable row has been added to the LP, then we cannot apply fixing anymore (cannot change a row)
4575 * this should not happen, as applyFixings is called in addRelaxation() before creating and adding a row
4577 assert(consdata->row == NULL || !SCIProwIsInLP(consdata->row) || SCIProwIsModifiable(consdata->row));
4727 else if( SCIPisGE(scip, ABS(consdata->lhs), 1.0) && SCIPisEQ(scip, lhssubtrahend, consdata->lhs) )
4759 else if( SCIPisGE(scip, ABS(consdata->rhs), 1.0) && SCIPisEQ(scip, rhssubtrahend, consdata->rhs) )
4773 /* if aggregated variables have been replaced, multiple entries of the same variable are possible and we have
4792/** for each variable in the linear constraint, except the inferred variable, adds one bound to the conflict analysis'
4793 * candidate store (bound depends on sign of coefficient and whether the left or right hand side was the reason for the
4794 * inference variable's bound change); the conflict analysis can be initialized with the linear constraint being the
4802 SCIP_BDCHGIDX* bdchgidx, /**< bound change index (time stamp of bound change), or NULL for current time */
4831 /* for each variable, add the bound to the conflict queue, that is responsible for the minimal or maximal
4832 * residual value, depending on whether the left or right hand side is responsible for the bound change:
4837 /* if the variable is integral we only need to add reason bounds until the propagation could be applied */
4850 /* calculate the minimal and maximal global activity of all other variables involved in the constraint */
4855 consdataGetGlbActivityResiduals(scip, consdata, infervar, vals[inferpos], FALSE, &minresactivity, NULL,
4858 consdataGetGlbActivityResiduals(scip, consdata, infervar, vals[inferpos], FALSE, NULL, &maxresactivity,
4872 if( (reasonisrhs && !isminsettoinfinity && ismintight) || (!reasonisrhs && !ismaxsettoinfinity && ismaxtight) ) /*lint !e644*/
4879 /* calculate the residual capacity that would be left, if the variable would be set to one more / one less
4934 /* rhs is reason and coeff is positive, or lhs is reason and coeff is negative -> lower bound */
4936 rescap -= vals[i] * (SCIPgetVarLbAtIndex(scip, vars[i], bdchgidx, FALSE) - SCIPvarGetLbGlobal(vars[i]));
4940 /* lhs is reason and coeff is positive, or rhs is reason and coeff is negative -> upper bound */
4942 rescap -= vals[i] * (SCIPgetVarUbAtIndex(scip, vars[i], bdchgidx, FALSE) - SCIPvarGetUbGlobal(vars[i]));
4962 /* rhs is reason and coeff is positive, or lhs is reason and coeff is negative -> lower bound is responsible */
4967 /* lhs is reason and coeff is positive, or rhs is reason and coeff is negative -> upper bound is responsible */
4975/** for each variable in the linear ranged row constraint, except the inferred variable, adds the bounds of all fixed
4976 * variables to the conflict analysis' candidate store; the conflict analysis can be initialized
4977 * with the linear constraint being the conflict detecting constraint by using NULL as inferred variable
4984 SCIP_BDCHGIDX* bdchgidx, /**< bound change index (time stamp of bound change), or NULL for current time */
5016 if( !SCIPisEQ(scip, SCIPgetVarLbAtIndex(scip, vars[v], bdchgidx, FALSE), SCIPvarGetLbGlobal(vars[v])) )
5022 if( !SCIPisEQ(scip, SCIPgetVarUbAtIndex(scip, vars[v], bdchgidx, FALSE), SCIPvarGetUbGlobal(vars[v])) )
5032 if( SCIPisEQ(scip, SCIPgetVarLbAtIndex(scip, vars[v], bdchgidx, FALSE), SCIPgetVarUbAtIndex(scip, vars[v], bdchgidx, FALSE)) )
5034 /* add all bounds of fixed variables which lead to the boundchange of the given inference variable */
5091/** resolves a propagation on the given variable by supplying the variables needed for applying the corresponding
5102 SCIP_BDCHGIDX* bdchgidx, /**< bound change index (time stamp of bound change), or NULL for current time */
5103 SCIP_RESULT* result /**< pointer to store the result of the propagation conflict resolving call */
5144 /* the bound of the variable was tightened, because the minimal or maximal residual activity of the linear
5145 * constraint (only taking the other variables into account) didn't leave enough space for a larger
5154 /* the bound of the variable was tightened, because the minimal or maximal residual activity of the linear
5155 * constraint (only taking the other variables into account) didn't leave enough space for a larger
5164 /* the bound of the variable was tightened, because some variables were already fixed and the leftover only allow
5176 SCIPerrorMessage("invalid inference information %d in linear constraint <%s> at position %d for %s bound of variable <%s>\n",
5196 if( (SCIPgetStage(scip) != SCIP_STAGE_SOLVING && !SCIPinProbing(scip)) || !SCIPisConflictAnalysisApplicable(scip) )
5202 /* add the conflicting bound for each variable of infeasible constraint to conflict candidate queue */
5250 SCIP_Bool force /**< should a possible bound change be forced even if below bound strengthening tolerance */
5275 SCIPdebugMsg(scip, "linear constraint <%s>: tighten <%s>, old bds=[%.15g,%.15g], val=%.15g, activity=[%.15g,%.15g], sides=[%.15g,%.15g] -> newub=%.15g\n",
5277 QUAD_TO_DBL(consdata->minactivity), QUAD_TO_DBL(consdata->maxactivity), consdata->lhs, consdata->rhs, newub);
5280 SCIP_CALL( SCIPinferVarUbCons(scip, var, newub, cons, getInferInt(proprule, pos), force, &infeasible, &tightened) );
5319 SCIP_Bool force /**< should a possible bound change be forced even if below bound strengthening tolerance */
5344 SCIPdebugMsg(scip, "linear constraint <%s>: tighten <%s>, old bds=[%.15g,%.15g], val=%.15g, activity=[%.15g,%.15g], sides=[%.15g,%.15g] -> newlb=%.15g\n",
5346 QUAD_TO_DBL(consdata->minactivity), QUAD_TO_DBL(consdata->maxactivity), consdata->lhs, consdata->rhs, newlb);
5349 SCIP_CALL( SCIPinferVarLbCons(scip, var, newlb, cons, getInferInt(proprule, pos), force, &infeasible, &tightened) );
5385 SCIP_Bool force /**< should a possible bound change be forced even if below bound strengthening tolerance */
5445 /* min activity should be valid at this point (if this is not true, then some decisions might be wrong!) */
5448 /* if the minactivity is larger than the right hand side by feasibility epsilon, the constraint is infeasible */
5460 /* if the slack is zero in tolerances (or negative, but not enough to make the constraint infeasible), we set
5504 /* if the maxactivity is smaller than the left hand side by feasibility epsilon, the constraint is infeasible */
5516 /* if the slack is zero in tolerances (or negative, but not enough to make the constraint infeasible), we set
5552 /* min activity should be valid at this point (if this is not true, then some decisions might be wrong!) */
5555 /* if the minactivity is larger than the right hand side by feasibility epsilon, the constraint is infeasible */
5567 /* if the slack is zero in tolerances (or negative, but not enough to make the constraint infeasible), we set
5610 /* if the maxactivity is smaller than the left hand side by feasibility epsilon, the constraint is infeasible */
5622 /* if the slack is zero in tolerances (or negative, but not enough to make the constraint infeasible), we set
5654/** analyzes conflicting bounds on given ranged row constraint, and adds conflict constraint to problem */
5677 if( (SCIPgetStage(scip) != SCIP_STAGE_SOLVING && !SCIPinProbing(scip)) || !SCIPisConflictAnalysisApplicable(scip) )
5683 /* add the conflicting fixed variables of this ranged row constraint to conflict candidate queue */
5697 * Check ranged rows for possible solutions, possibly detect infeasibility, fix variables due to having only one possible
5698 * solution, tighten bounds if having only two possible solutions or add constraints which propagate a subset of
5783 addartconss = conshdlrdata->rangedrowartcons && SCIPgetDepth(scip) < 1 && !SCIPinProbing(scip) && !SCIPinRepropagation(scip);
5788 /* we are not allowed to add artificial constraints during propagation; if nothing changed on this constraint since
5789 * the last rangedrowpropagation, we can stop; otherwise, we mark this constraint to be rangedrowpropagated without
5807 if( SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v]), SCIPvarGetUbLocal(consdata->vars[v])) )
5836 * coefficient so that all variables in this group will have a gcd greater than 1, this group will be implicitly
5839 * the second group will contain all left unfixed variables and will be saved as infcheckvars with corresponding
5840 * coefficients as infcheckvals, the order of these variables should be the same as in the consdata object
5843 /* find first integral variables with integral coefficient greater than 1, thereby collecting all other unfixed
5853 /* partition the variables, do not change the order of collection, because it might be used later on */
5855 || !SCIPisIntegral(scip, consdata->vals[v]) || SCIPisEQ(scip, REALABS(consdata->vals[v]), 1.0) ) )
5857 if( !SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v]), SCIPvarGetUbLocal(consdata->vars[v])) )
5883 while( v < consdata->nvars && SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v]), SCIPvarGetUbLocal(consdata->vars[v])) );
5897 assert(!SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v]), SCIPvarGetUbLocal(consdata->vars[v])));
5898 assert(SCIPvarIsIntegral(consdata->vars[v]) && SCIPisIntegral(scip, consdata->vals[v]) && REALABS(consdata->vals[v]) > 1.5);
5905 /* go on to partition the variables, do not change the order of collection, because it might be used later on;
5909 if( SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v]), SCIPvarGetUbLocal(consdata->vars[v])) )
5961 /* it should not happen that all variables are of integral type and have a gcd >= 2, this should be done by
6020 SCIPdebugMsg(scip, "minactinfvarsinvalid = %u, minactinfvars = %g, maxactinfvarsinvalid = %u, maxactinfvars = %g, gcd = %lld, ninfcheckvars = %d, ncontvars = %d\n",
6021 minactinfvarsinvalid, minactinfvars, maxactinfvarsinvalid, maxactinfvars, gcd, ninfcheckvars, ncontvars);
6023 /* @todo maybe we took the wrong variables as infcheckvars we could try to exchange integer variables */
6024 /* @todo if minactinfvarsinvalid or maxactinfvarsinvalid are true, try to exchange both partitions to maybe get valid
6026 /* @todo calculate minactivity and maxactivity for all non-intcheckvars, and use this for better bounding,
6028 * that therefore the conflict variables in addConflictFixedVars() need to be extended by all variables which
6032 /* check if between left hand side and right hand side exist a feasible point, if not the constraint leads to
6037 SCIPdebugMsg(scip, "no feasible value exist, constraint <%s> lead to infeasibility", SCIPconsGetName(cons));
6042 SCIP_CALL( analyzeConflictRangedRow(scip, cons, infcheckvars, ninfcheckvars, NULL, SCIP_INVALID) );
6059 gcdinfvars = SCIPcalcGreComDiv(gcdinfvars, (SCIP_Longint)(REALABS(infcheckvals[v]) + feastol));
6067 /* compute solutions for this ranged row, if all variables are of integral type with integral coefficients */
6136 SCIPdebugMsg(scip, "here nsols %s %d, minsolvalue = %g, maxsolvalue = %g, ninfcheckvars = %d, nunfixedvars = %d\n",
6144 SCIPdebugMsg(scip, "no solution found; constraint <%s> lead to infeasibility\n", SCIPconsGetName(cons));
6149 SCIP_CALL( analyzeConflictRangedRow(scip, cons, infcheckvars, ninfcheckvars, NULL, SCIP_INVALID) );
6177 SCIP_CALL( analyzeConflictRangedRow(scip, cons, infcheckvars, ninfcheckvars, NULL, SCIP_INVALID) );
6198 if( !SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v]), SCIPvarGetUbLocal(consdata->vars[v])) )
6210 if( SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v2]), SCIPvarGetUbLocal(consdata->vars[v2])) )
6292 else if( addartconss && (SCIPisGT(scip, minvalue, minactinfvars) || SCIPisLT(scip, maxvalue, maxactinfvars)) )
6299 (void)SCIPsnprintf(name, SCIP_MAXSTRLEN, "%s_artcons_%d", SCIPconsGetName(cons), conshdlrdata->naddconss);
6304 SCIP_CALL( SCIPcreateConsLinear(scip, &newcons, name, ninfcheckvars, infcheckvars, infcheckvals,
6356 SCIP_CALL( analyzeConflictRangedRow(scip, cons, infcheckvars, ninfcheckvars, NULL, SCIP_INVALID) );
6377 SCIP_CALL( analyzeConflictRangedRow(scip, cons, infcheckvars, ninfcheckvars, NULL, SCIP_INVALID) );
6399 if( !SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v]), SCIPvarGetUbLocal(consdata->vars[v])) )
6411 if( SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v2]), SCIPvarGetUbLocal(consdata->vars[v2])) )
6518 SCIP_CALL( analyzeConflictRangedRow(scip, cons, infcheckvars, ninfcheckvars, consdata->vars[v], newlb) );
6539 SCIP_CALL( analyzeConflictRangedRow(scip, cons, infcheckvars, ninfcheckvars, consdata->vars[v], newub) );
6547 /* at least two solutions and more than one variable, so we add a new constraint which bounds the feasible
6550 else if( addartconss && (SCIPisGT(scip, minvalue, minactinfvars) || SCIPisLT(scip, maxvalue, maxactinfvars)) )
6572 (void)SCIPsnprintf(name, SCIP_MAXSTRLEN, "%s_artcons1_%d", SCIPconsGetName(cons), conshdlrdata->naddconss);
6577 SCIP_CALL( SCIPcreateConsLinear(scip, &newcons, name, ninfcheckvars, infcheckvars, infcheckvals, newlhs, newrhs,
6586 /* @todo maybe add constraint for all variables which are not infcheckvars, lhs should be minvalue, rhs
6607 if( !SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v]), SCIPvarGetUbLocal(consdata->vars[v])) )
6657 if( v == consdata->nvars && !SCIPisHugeValue(scip, -minact) && !SCIPisHugeValue(scip, maxact) )
6672 (void)SCIPsnprintf(name, SCIP_MAXSTRLEN, "%s_artcons2_%d", SCIPconsGetName(cons), conshdlrdata->naddconss);
6677 SCIP_CALL( SCIPcreateConsLinear(scip, &newcons, name, ninfcheckvars, infcheckvars, infcheckvals, newlhs, newrhs,
6703 SCIP_Bool force /**< should a possible bound change be forced even if below bound strengthening tolerance */
6746 consdataGetActivityResiduals(scip, consdata, var, val, FALSE, &minresactivity, &maxresactivity,
6759 /* check, if we can tighten the variable's bounds reliably, therefore only consider sides which are small or
6760 * relatively different to the residual activity bound to avoid cancellation leading to numerical difficulties
6770 ((force && SCIPisLT(scip, newub, ub)) || (SCIPvarIsIntegral(var) && SCIPisFeasLT(scip, newub, ub)) || SCIPisUbBetter(scip, newub, lb, ub)) )
6781 (!SCIPisUbBetter(scip, newub, lb, ub) && (!SCIPisFeasLT(scip, newub, ub) || !SCIPvarIsIntegral(var))
6788 SCIPdebugMsg(scip, "linear constraint <%s>: tighten <%s>, old bds=[%.15g,%.15g], val=%.15g, resactivity=[%.15g,%.15g], sides=[%.15g,%.15g] -> newub=%.15g\n",
6789 SCIPconsGetName(cons), SCIPvarGetName(var), lb, ub, val, minresactivity, maxresactivity, lhs, rhs, newub);
6805 ub = SCIPvarGetUbLocal(var); /* get bound again: it may be additionally modified due to integrality */
6823 ((force && SCIPisGT(scip, newlb, lb)) || (SCIPvarIsIntegral(var) && SCIPisFeasGT(scip, newlb, lb)) || SCIPisLbBetter(scip, newlb, lb, ub)) )
6838 SCIPdebugMsg(scip, "linear constraint <%s>: tighten <%s>, old bds=[%.15g,%.15g], val=%.15g, resactivity=[%.15g,%.15g], sides=[%.15g,%.15g] -> newlb=%.15g\n",
6839 SCIPconsGetName(cons), SCIPvarGetName(var), lb, ub, val, minresactivity, maxresactivity, lhs, rhs, newlb);
6855 lb = SCIPvarGetLbLocal(var); /* get bound again: it may be additionally modified due to integrality */
6866 /* check, if we can tighten the variable's bounds reliably, therefore only consider sides which are small or
6867 * relatively different to the residual activity bound to avoid cancellation leading to numerical difficulties
6876 ((force && SCIPisGT(scip, newlb, lb)) || (SCIPvarIsIntegral(var) && SCIPisFeasGT(scip, newlb, lb)) || SCIPisLbBetter(scip, newlb, lb, ub)) )
6887 || (!SCIPisLbBetter(scip, newlb, lb, ub) && (!SCIPisFeasGT(scip, newlb, lb) || !SCIPvarIsIntegral(var))
6894 SCIPdebugMsg(scip, "linear constraint <%s>: tighten <%s>, old bds=[%.15g,%.15g], val=%.15g, resactivity=[%.15g,%.15g], sides=[%.15g,%.15g] -> newlb=%.15g\n",
6895 SCIPconsGetName(cons), SCIPvarGetName(var), lb, ub, val, minresactivity, maxresactivity, lhs, rhs, newlb);
6911 lb = SCIPvarGetLbLocal(var); /* get bound again: it may be additionally modified due to integrality */
6928 ((force && SCIPisLT(scip, newub, ub)) || (SCIPvarIsIntegral(var) && SCIPisFeasLT(scip, newub, ub)) || SCIPisUbBetter(scip, newub, lb, ub)) )
6943 SCIPdebugMsg(scip, "linear constraint <%s>: tighten <%s>, old bds=[%.15g,%.15g], val=%.15g, resactivity=[%.15g,%.15g], sides=[%.15g,%.15g], newub=%.15g\n",
6944 SCIPconsGetName(cons), SCIPvarGetName(var), lb, ub, val, minresactivity, maxresactivity, lhs, rhs, newub);
6960 ub = SCIPvarGetUbLocal(var); /* get bound again: it may be additionally modified due to integrality */
6980 SCIP_Real maxeasyactivitydelta,/**< maximum activity delta to run easy propagation on linear constraint */
7069 consdataGetActivityBounds(scip, consdata, FALSE, &minactivity, &maxactivity, &ismintight, &ismaxtight,
7074 slack = (SCIPisInfinity(scip, consdata->rhs) || isminsettoinfinity) ? SCIPinfinity(scip) : (consdata->rhs - minactivity);
7075 surplus = (SCIPisInfinity(scip, -consdata->lhs) || ismaxsettoinfinity) ? SCIPinfinity(scip) : (maxactivity - consdata->lhs);
7085 /* as long as the bounds might be tightened again, try to tighten them; abort after a maximal number of rounds */
7093 for( nrounds = 0; (force || consdata->boundstightened < tightenmode) && nrounds < MAXTIGHTENROUNDS; ++nrounds ) /*lint !e574*/
7097 * note: it might happen that integer variables become binary during bound tightening at the root node
7108 /* try to tighten the bounds of each variable in the constraint. During solving process, the binary variable
7132 && !SCIPisFeasEQ(scip, SCIPvarGetUbLocal(consdata->vars[v]), SCIPvarGetLbLocal(consdata->vars[v])) )
7139 SCIPdebugMessage("linear constraint <%s> found %d bound changes in round %d\n", SCIPconsGetName(cons),
7147 assert(*cutoff || SCIPisFeasEQ(scip, SCIPvarGetLbLocal(consdata->vars[0]), SCIPvarGetUbLocal(consdata->vars[0])));
7159 SCIP_Bool checklprows, /**< Do constraints represented by rows in the current LP have to be checked? */
7160 SCIP_Bool checkrelmaxabs, /**< Should the violation for a constraint with side 0.0 be checked relative
7196 SCIPdebugMsg(scip, " consdata activity=%.15g (lhs=%.15g, rhs=%.15g, row=%p, checklprows=%u, rowinlp=%u, sol=%p, hascurrentnodelp=%u)\n",
7218 /* the activity of pseudo solutions may be invalid if it comprises positive and negative infinity contributions; we
7234 else if( !consdata->checkabsolute && (SCIPisFeasLT(scip, activity, consdata->lhs) || SCIPisFeasGT(scip, activity, consdata->rhs)) )
7247 /* the (much) more complicated check: we try to disregard random noise and violations of a 0.0 side which are
7296 SCIPdebugMsg(scip, " lhs violated absolutely (violation=%16.9g), but feasible when using relative tolerance w.r.t. maximum absolute value (%16.9g)\n",
7350 SCIPdebugMsg(scip, " rhs violated absolutely (violation=%16.9g), but feasible when using relative tolerance w.r.t. maximum absolute value (%16.9g)\n",
7386 ((!SCIPisInfinity(scip, -consdata->lhs) && SCIPisGT(scip, consdata->lhs-activity, SCIPfeastol(scip))) ||
7387 (!SCIPisInfinity(scip, consdata->rhs) && SCIPisGT(scip, activity-consdata->rhs, SCIPfeastol(scip)))) )
7429 SCIP_CALL( SCIPcreateEmptyRowCons(scip, &consdata->row, cons, SCIPconsGetName(cons), consdata->lhs, consdata->rhs,
7432 SCIP_CALL( SCIPaddVarsToRow(scip, consdata->row, consdata->nvars, consdata->vars, consdata->vals) );
7457 /* replace all fixed variables by active counterparts, as we have no chance to do this anymore after the row has been added to the LP
7511 /* skip deactivated, redundant, or local linear constraints (the NLP does not allow for local rows at the moment) */
7523 0.0, consdata->nvars, consdata->vars, consdata->vals, NULL, consdata->lhs, consdata->rhs, SCIP_EXPRCURV_LINEAR) );
7536/** separates linear constraint: adds linear constraint as cut, if violated by given solution */
7544 SCIP_Bool separateall, /**< should all constraints be subject to cardinality cut generation instead of only
7566 SCIP_CALL( checkCons(scip, cons, sol, (sol != NULL), conshdlrdata->checkrelmaxabs, &violated) );
7579 /* we only want to call the knapsack cardinality cut separator for rows that have a non-zero dual solution */
7633 SCIP_Real maxeasyactivitydelta,/**< maximum activity delta to run easy propagation on linear constraint */
7678 /* increase age of constraint; age is reset to zero, if a conflict or a propagation was found */
7717 SCIPdebug( SCIPdebugMsg(scip, "linear constraint <%s> found %d bound changes and %d fixings\n", SCIPconsGetName(cons), *nchgbds - oldnchgbds, nfixedvars); )
7727 consdataGetActivityBounds(scip, consdata, TRUE, &minactivity, &maxactivity, &isminacttight, &ismaxacttight,
7732 SCIPdebugMsg(scip, "linear constraint <%s> is infeasible (rhs): activitybounds=[%.15g,%.15g], sides=[%.15g,%.15g]\n",
7743 SCIPdebugMsg(scip, "linear constraint <%s> is infeasible (lhs): activitybounds=[%.15g,%.15g], sides=[%.15g,%.15g]\n",
7752 else if( SCIPisGE(scip, minactivity, consdata->lhs) && SCIPisLE(scip, maxactivity, consdata->rhs) )
7754 SCIPdebugMsg(scip, "linear constraint <%s> is redundant: activitybounds=[%.15g,%.15g], sides=[%.15g,%.15g]\n",
7757 /* remove the constraint locally unless it has become empty, in which case it is removed globally */
7815 SCIPdebugMsg(scip, "converting variable <%s> with fixed bounds [%.15g,%.15g] into fixed variable fixed at %.15g\n",
7852 * a) if the constraint has a finite right hand side and the negative infinity counters for the minactivity are zero
7853 * then add the variables as a clique for which all successive pairs of coefficients fullfill the following
7858 * and also add the binary to binary implication also for non-successive variables for which the same argument
7863 * e.g. 5.3 x1 + 3.6 x2 + 3.3 x3 + 2.1 x4 <= 5.5 (all x are binary) would lead to the clique (x1, x2, x3) and the
7866 * b) if the constraint has a finite left hand side and the positive infinity counters for the maxactivity are zero
7867 * then add the variables as a clique for which all successive pairs of coefficients fullfill the follwoing
7872 * and also add the binary to binary implication also for non-successive variables for which the same argument
7879 * c) the constraint has a finite right hand side and a finite minactivity then add the variables as a negated
7880 * clique(clique on the negated variables) for which all successive pairs of coefficients fullfill the following
7885 * and also add the binary to binary implication also for non-successive variables for which the
7890 * e.g. -4 x1 -3 x2 - 2 x3 + 2 x4 <= -4 would lead to the (negated) clique (~x1, ~x2) and the binary to binary
7893 * d) the constraint has a finite left hand side and a finite maxactivity then add the variables as a negated
7894 * clique(clique on the negated variables) for which all successive pairs of coefficients fullfill the following
7899 * and also add the binary to binary implication also for non-successive variables for which the same argument
7906 * 2. if the linear constraint represents a set-packing or set-partitioning constraint, the whole constraint is added
7914 SCIP_Real maxeasyactivitydelta,/**< maximum activity delta to run easy propagation on linear constraint */
7958 * for now we only add binary to non-binary implications, and this is only done for the binary variable with the
7959 * maximal absolute contribution and also only if this variable would force all other variables to their bound
7967 /* @todo we might extract implications/cliques if SCIPvarIsBinary() variables exist and we have integer variables
7971 * "seem to", because there are rare situations in which variables may actually not be sorted by type, even though consdataSort has been called
7972 * this situation can occur if, e.g., the type of consdata->vars[1] has been changed to binary, but the corresponding variable event has
7973 * not been executed yet, because it is the eventExecLinear() which marks the variables array as unsorted (set consdata->indexsorted to FALSE),
7975 * we assume that in this situation the below code may be executed in a future presolve round, after the variable events have been executed
7991 finitenegminact = (consdata->glbminactivityneginf == 0 && consdata->glbminactivityneghuge == 0);
7993 finiteposminact = (consdata->glbminactivityposinf == 0 && consdata->glbminactivityposhuge == 0);
7994 finiteposmaxact = (consdata->glbmaxactivityposinf == 0 && consdata->glbmaxactivityposhuge == 0);
7998 if( (finiterhs || finitelhs) && (finitenegminact || finiteposminact || finitenegmaxact || finiteposmaxact) )
8061 /* if the right hand side and the minimal activity are finite and changing the variable with the biggest
8062 * influence to their bound forces all other variables to be at their minimal contribution, we can add these
8065 if( finiterhs && finiteminact && SCIPisEQ(scip, QUAD_TO_DBL(consdata->glbminactivity), consdata->rhs - maxabscontrib) )
8077 SCIP_CALL( SCIPaddVarImplication(scip, vars[position], posval, vars[v], SCIP_BOUNDTYPE_UPPER, SCIPvarGetLbGlobal(vars[v]), &infeasible, &nbdchgs) );
8084 SCIP_CALL( SCIPaddVarImplication(scip, vars[position], posval, vars[v], SCIP_BOUNDTYPE_LOWER, SCIPvarGetUbGlobal(vars[v]), &infeasible, &nbdchgs) );
8096 /* stop when reaching a 'real' binary variable because the variables are sorted after their type */
8097 else if( SCIPvarGetType(vars[v]) == SCIP_VARTYPE_BINARY && !SCIPvarIsImpliedIntegral(vars[v]) )
8102 /* if the left hand side and the maximal activity are finite and changing the variable with the biggest
8103 * influence to their bound forces all other variables to be at their minimal contribution, we can add these
8106 if( finitelhs && finitemaxact && SCIPisEQ(scip, QUAD_TO_DBL(consdata->glbmaxactivity), consdata->lhs - maxabscontrib) )
8118 SCIP_CALL( SCIPaddVarImplication(scip, vars[position], posval, vars[v], SCIP_BOUNDTYPE_LOWER, SCIPvarGetUbGlobal(vars[v]), &infeasible, &nbdchgs) );
8125 SCIP_CALL( SCIPaddVarImplication(scip, vars[position], posval, vars[v], SCIP_BOUNDTYPE_UPPER, SCIPvarGetLbGlobal(vars[v]), &infeasible, &nbdchgs) );
8137 /* stop when reaching a 'real' binary variable because the variables are sorted after their type */
8146 SCIPdebugMsg(scip, "extracted %d implications from constraint %s which led to %d bound changes, %scutoff detetcted\n", nimpls, SCIPconsGetName(cons), *nchgbds - oldnchgbds, *cutoff ? "" : "no ");
8151 /* did we find some boundchanges, then we need to remove fixings and tighten the bounds further */
8200 finitenegminact = (consdata->glbminactivityneginf == 0 && consdata->glbminactivityneghuge == 0);
8202 finiteposminact = (consdata->glbminactivityposinf == 0 && consdata->glbminactivityposhuge == 0);
8203 finiteposmaxact = (consdata->glbmaxactivityposinf == 0 && consdata->glbmaxactivityposhuge == 0);
8207 /* 1. we wheck whether some variables do not fit together into this constraint and add the corresponding clique
8210 if( (finiterhs || finitelhs) && (finitenegminact || finiteposminact || finitenegmaxact || finiteposmaxact) )
8247 /* setppc constraints will be handled later; we need at least two binary variables with same sign to extract
8282#ifdef SCIP_DISABLED_CODE /* assertion should only hold when constraints were fully propagated and boundstightened */
8283 /* check that it is possible to choose binvar[i], otherwise it should have been fixed to zero */
8321 /* iterate up to the end with j and up to the front with lastfit, and check for different cliques */
8358 /* did we find some boundchanges, then we need to remove fixings and tighten the bounds further */
8433 /* check that it is possible to choose binvar[i], otherwise it should have been fixed to zero */
8473 /* iterate up to the front with j and up to the end with lastfit, and check for different cliques */
8484 SCIP_CALL( SCIPaddClique(scip, &(clqvars[lastfit - jstart - 2]), NULL, i - lastfit + 2, FALSE, &infeasible, &nbdchgs) );
8512 /* did we find some boundchanges, then we need to remove fixings and tighten the bounds further */
8612 SCIP_CALL( SCIPaddClique(scip, &(binvars[j+1]), values, i - j, FALSE, &infeasible, &nbdchgs) );
8634 /* iterate up to the front with j and up to the end with lastfit, and check for different cliques */
8645 SCIP_CALL( SCIPaddClique(scip, &(clqvars[lastfit - jstart - 2]), values, i - lastfit + 2, FALSE, &infeasible, &nbdchgs) );
8675 /* did we find some boundchanges, then we need to remove fixings and tighten the bounds further */
8792 /* iterate up to the end with j and up to the front with lastfit, and check for different cliques */
8838 /* check if all variables are binary, if the coefficients are +1 or -1, and if the right hand side is equal
8839 * to 1 - number of negative coefficients, or if the left hand side is equal to number of positive coefficients - 1
8870 SCIP_CALL( SCIPaddClique(scip, vars, values, nvars, SCIPisEQ(scip, consdata->lhs, consdata->rhs), &infeasible, &nbdchgs) );
8935 SCIPdebugMsg(scip, "rounding sides=[%.15g,%.15g] of linear constraint <%s> with integral coefficients and variables only "
8969/** tightens coefficients of binary, integer, and implied integral variables due to activity bounds in presolving:
8976 * xi fixed to its bounds, but with a reduced ai and tightened sides to tighten the LP relaxation
8985 * xi fixed to its bounds, but with a reduced ai and tightened sides to tighten the LP relaxation
8993 * A deviation of only one from their bound makes the lhs/rhs feasible (i.e., redundant), even if all other
8994 * variables are set to their "worst" bound. If all variables which are not relevant cannot make the lhs/rhs
8995 * redundant, even if they are set to their "best" bound, they can be removed from the constraint. E.g., for binary
8996 * variables and an inequality x_1 +x_2 +10y_1 +10y_2 >= 5, setting either of the y_i to one suffices to fulfill the
8999 * @todo use also some tightening procedures for (knapsack) constraints with non-integer coefficients, see
9013 SCIP_Real minactivity; /* minimal value w.r.t. the variable's local bounds for the constraint's
9015 SCIP_Real maxactivity; /* maximal value w.r.t. the variable's local bounds for the constraint's
9017 SCIP_Bool isminacttight; /* are all contributions to the minactivity non-huge or non-contradicting? */
9018 SCIP_Bool ismaxacttight; /* are all contributions to the maxactivity non-huge or non-contradicting? */
9047 consdataGetActivityBounds(scip, consdata, TRUE, &minactivity, &maxactivity, &isminacttight, &ismaxacttight,
9073 && SCIPisGE(scip, minactivity + val, consdata->lhs) && SCIPisLE(scip, maxactivity - val, consdata->rhs);
9095 lval -= otherval > 0.0 ? otherval * SCIPvarGetLbLocal(consdata->vars[1-i]) : otherval * SCIPvarGetUbLocal(consdata->vars[1-i]);
9101 rval += otherval > 0.0 ? otherval * SCIPvarGetUbLocal(consdata->vars[1-i]) : otherval * SCIPvarGetLbLocal(consdata->vars[1-i]);
9116 SCIPdebugMsg(scip, "linear constraint <%s>: change coefficient %+.15g<%s> to %+.15g<%s>, act=[%.15g,%.15g], side=[%.15g,%.15g]\n",
9138 SCIPdebugMsg(scip, "linear constraint <%s>: change lhs %.15g to %.15g\n", SCIPconsGetName(cons),
9148 SCIPdebugMsg(scip, "linear constraint <%s>: change rhs %.15g to %.15g\n", SCIPconsGetName(cons),
9184 && SCIPisGE(scip, minactivity - val, consdata->lhs) && SCIPisLE(scip, maxactivity + val, consdata->rhs);
9206 lval += otherval > 0.0 ? otherval * SCIPvarGetLbLocal(consdata->vars[1-i]) : otherval * SCIPvarGetUbLocal(consdata->vars[1-i]);
9212 rval -= otherval > 0.0 ? otherval * SCIPvarGetUbLocal(consdata->vars[1-i]) : otherval * SCIPvarGetLbLocal(consdata->vars[1-i]);
9227 SCIPdebugMsg(scip, "linear constraint <%s>: change coefficient %+.15g<%s> to %+.15g<%s>, act=[%.15g,%.15g], side=[%.15g,%.15g]\n",
9249 SCIPdebugMsg(scip, "linear constraint <%s>: change lhs %.15g to %.15g\n", SCIPconsGetName(cons),
9259 SCIPdebugMsg(scip, "linear constraint <%s>: change rhs %.15g to %.15g\n", SCIPconsGetName(cons),
9304 /* if the lhs is finite, we will check in the following whether the not relevant variables can make lhs feasible;
9305 * this is not valid, if the minactivity is -\infty (aggrlhs would be minus infinity in the following computation)
9306 * or if huge values contributed to the minactivity, because the minactivity is then just a relaxation
9310 if( !SCIPisInfinity(scip, -consdata->lhs) && (SCIPisInfinity(scip, -minactivity) || !isminacttight) )
9313 /* if the rhs is finite, we will check in the following whether the not relevant variables can make rhs feasible;
9314 * this is not valid, if the maxactivity is \infty (aggrrhs would be infinity in the following computation)
9315 * or if huge values contributed to the maxactivity, because the maxactivity is then just a relaxation
9319 if( !SCIPisInfinity(scip, consdata->rhs) && (SCIPisInfinity(scip, maxactivity) || !ismaxacttight) )
9323 * relevant variables are all those where a deviation from the bound makes the lhs/rhs redundant
9328 /* check if the constraint contains variables whose coefficient can be removed. The reasoning is the following:
9329 * Each relevant variable can make the lhs/rhs feasible with a deviation of only one in the bound. If _all_ not
9330 * relevant variables together cannot make lhs/rhs redundant, they can be removed from the constraint. aggrrhs may
9356 SCIPdebugMsg(scip, "linear constraint <%s>: remove variable <%s> from constraint since it is redundant\n",
9382 SCIPdebugMsg(scip, "linear constraint <%s>: change lhs %.15g to %.15g\n", SCIPconsGetName(cons),
9392 SCIPdebugMsg(scip, "linear constraint <%s>: change rhs %.15g to %.15g\n", SCIPconsGetName(cons),
9412/** processes equality with only one variable by fixing the variable and deleting the constraint */
9468/** processes equality with exactly two variables by aggregating one of the variables and deleting the constraint */
9499 SCIP_CALL( SCIPaggregateVars(scip, consdata->vars[0], consdata->vars[1], consdata->vals[0], consdata->vals[1],
9526/** calculates the new lhs and rhs of the constraint after the given variable is aggregated out */
9574/** processes equality with more than two variables by multi-aggregating one of the variables and converting the equality
9575 * into an inequality; if multi-aggregation is not possible, tries to identify one continuous or integer variable that
9578 * @todo Check whether a more clever way of avoiding aggregation of variables containing implied integral variables
9630 SCIPdebugMsg(scip, "linear constraint <%s>: try to multi-aggregate equality\n", SCIPconsGetName(cons));
9634 * maxnlocksstay: maximal sum of lock numbers if the constraint does not become redundant after the aggregation
9635 * maxnlocksremove: maximal sum of lock numbers if the constraint can be deleted after the aggregation
9642 /* If the constraint becomes redundant, 3 non-zeros are removed, and we get 1 additional non-zero for each
9643 * constraint the variable appears in. Thus, the variable must appear in at most 3 other constraints.
9649 /* If the constraint becomes redundant, 4 non-zeros are removed, and we get 2 additional non-zeros for each
9650 * constraint the variable appears in. Thus, the variable must appear in at most 2 other constraints.
9656 /* If the constraint is redundant but has more than 4 variables, we can only accept one other constraint. */
9708 assert(!SCIPconsIsChecked(cons) || SCIPvarGetNLocksDownType(var, SCIP_LOCKTYPE_MODEL) >= 1); /* because variable is locked in this equality */
9729 slacktype = impltype != SCIP_IMPLINTTYPE_NONE ? SCIP_DEPRECATED_VARTYPE_IMPLINT : SCIPvarGetType(var);
9733 iscont = (slacktype == SCIP_VARTYPE_CONTINUOUS || slacktype == SCIP_DEPRECATED_VARTYPE_IMPLINT);
9758 /* check, if variable is used in too many other constraints, even if this constraint could be deleted */
9759 nlocks = SCIPvarGetNLocksDownType(var, SCIP_LOCKTYPE_MODEL) + SCIPvarGetNLocksUpType(var, SCIP_LOCKTYPE_MODEL);
9809 consdataGetActivityResiduals(scip, consdata, var, val, FALSE, &minresactivity, &maxresactivity,
9812 /* do not perform the multi-aggregation due to numerics, if we have huge contributions in the residual
9819 removescons = (SCIPisFeasLE(scip, newlhs, minresactivity) && SCIPisFeasLE(scip, maxresactivity, newrhs));
9824 if( !isminsettoinfinity && SCIPisUpdateUnreliable(scip, minresactivity, consdata->lastminactivity) )
9827 if( !ismaxsettoinfinity && SCIPisUpdateUnreliable(scip, maxresactivity, consdata->lastmaxactivity)
9831 removescons = (SCIPisFeasLE(scip, newlhs, minresactivity) && SCIPisFeasLE(scip, maxresactivity, newrhs));
9838 /* if the constraint does not become redundant, only accept the variable if it does not appear in
9849 else if( bestremovescons && !removescons && (bestslacktype > SCIP_VARTYPE_INTEGER || slacktype <= SCIP_VARTYPE_INTEGER) )
9863 /* if all coefficients and variables are integral, the right hand side must also be integral */
9872 /* if the slack variable is of integer type, and the constraint itself may take fractional values,
9878 && (bestslacktype == SCIP_VARTYPE_CONTINUOUS || bestslacktype == SCIP_DEPRECATED_VARTYPE_IMPLINT
9912 SCIPdebugMsg(scip, "linear constraint <%s>: multi-aggregate <%s> ==", SCIPconsGetName(cons), SCIPvarGetName(slackvar));
9927 SCIPdebugMsgPrint(scip, " %+.15g, bounds of <%s>: [%.15g,%.15g], nlocks=%d, maxnlocks=%d, removescons=%u\n",
9928 aggrconst, SCIPvarGetName(slackvar), SCIPvarGetLbGlobal(slackvar), SCIPvarGetUbGlobal(slackvar),
9932 SCIP_CALL( SCIPmultiaggregateVar(scip, slackvar, consdata->nvars - 1, aggrvars, scalars, aggrconst,
9942 SCIPdebugMsg(scip, "linear constraint <%s>: infeasible multi-aggregation\n", SCIPconsGetName(cons));
9950 SCIPdebugMsg(scip, "linear constraint <%s>: multi-aggregation not applicable\n", SCIPconsGetName(cons));
9965 SCIPdebugMsg(scip, "linear constraint <%s>: redundant after multi-aggregation\n", SCIPconsGetName(cons));
9982 /* upgrade continuous variable to an implied integral one, if the absolute value of the coefficient is one */
9986 SCIPdebugMsg(scip, "linear constraint <%s>: converting continuous variable <%s> to implied integral variable\n",
9988 /* if the integrality does not depend on weak implied integrality, the variable becomes strongly implied integral */
9994 SCIPdebugMsg(scip, "infeasible upgrade of variable <%s> to integral type, domain is empty\n", SCIPvarGetName(var));
10000 /* aggregate continuous variable to an implied integral one if the absolute coefficient is unequal to one */
10001 /* @todo check if the aggregation coefficient should be in some range(, which is not too big) */
10015 SCIP_CALL( SCIPcreateVarImpl(scip, &newvar, newvarname, -SCIPinfinity(scip), SCIPinfinity(scip), 0.0,
10032 SCIPdebugMsg(scip, "linear constraint <%s>: aggregating continuous variable <%s> to newly created implied integral variable <%s>, aggregation factor = %g\n",
10036 SCIP_CALL( SCIPaggregateVars(scip, var, newvar, absval, -1.0, 0.0, &infeasible, &redundant, &aggregated) );
10040 SCIPdebugMsg(scip, "infeasible aggregation of variable <%s> to implied integral variable <%s>, domain is empty\n",
10059 /* we do not have any event on vartype changes, so we need to manually force this constraint to be presolved
10071 /* this seems to help for rococo instances, but does not for rout (where all coefficients are +/- 1.0)
10084 SCIPdebugMsg(scip, "linear constraint <%s>: converting integer variable <%s> to implied integral variable\n",
10090 SCIPdebugMsg(scip, "infeasible upgrade of variable <%s> to integral type, domain is empty\n", SCIPvarGetName(var));
10101/** checks if the given variables and their coefficient are equal (w.r.t. scaling factor) to the objective function */
10139 /* if a variable has a zero objective coefficient the linear constraint is not a subset of the objective
10177/** check if the linear equality constraint is equal to a subset of the objective function; if so we can remove the
10206 /* check if the linear equality constraints does not have more variables than the objective function */
10212 (nvars == nobjvars && (!conshdlrdata->detectcutoffbound || !conshdlrdata->detectlowerbound)) )
10218 /* checks if the variables and their coefficients are equal (w.r.t. scaling factor) to the objective function */
10230 SCIPdebugMsg(scip, "linear equality constraint <%s> == %g (offset %g) is a subset of the objective function\n",
10250/** updates the cutoff if the given primal bound (which is implied by the given constraint) is better */
10260 /* increase the cutoff bound value by an epsilon to ensue that solution with the value of the cutoff bound are still
10278 /* we cannot disable the enforcement and propagation on ranged rows, because the cutoffbound could only have
10283 /* in case the cutoff bound is worse then the currently known one, we additionally avoid enforcement and
10294/** check if the linear constraint is parallel to objective function; if so update the cutoff bound and avoid that the
10325 /* check if the linear inequality constraints has the same number of variables as the objective function and if the
10334 /* There are no variables in the objective function and in the constraint. Thus, the constraint is redundant or proves
10335 * infeasibility. Since we have a pure feasibility problem, we do not want to set a cutoff or lower bound.
10340 /* checks if the variables and their coefficients are equal (w.r.t. scaling factor) to the objective function */
10358 SCIPdebugMsg(scip, "constraint <%s> is parallel to objective function and provides a cutoff bound <%g>\n",
10370 SCIPdebugMsg(scip, "constraint <%s> is parallel to objective function and provides a lower bound <%g>\n",
10379 /* avoid that the linear constraint enters the LP since it is parallel to the objective function */
10392 SCIPdebugMsg(scip, "constraint <%s> is parallel to objective function and provides a lower bound <%g>\n",
10404 SCIPdebugMsg(scip, "constraint <%s> is parallel to objective function and provides a cutoff bound <%g>\n",
10413 /* avoid that the linear constraint enters the LP since it is parallel to the objective function */
10471 SCIP_CALL( convertLongEquality(scip, conshdlrdata, cons, cutoff, naggrvars, ndelconss, nchgvartypes) );
10477/** returns whether the linear sum of all variables/coefficients except the given one divided by the given value is always
10496 if( v != pos && (!SCIPvarIsIntegral(consdata->vars[v]) || !SCIPisIntegral(scip, consdata->vals[v]/val)) )
10503/** check if \f$lhs/a_i - \sum_{j \neq i} a_j/a_i x_j\f$ is always inside the bounds of \f$x_i\f$,
10504 * check if \f$rhs/a_i - \sum_{j \neq i} a_j/a_i x_j\f$ is always inside the bounds of \f$x_i\f$
10548/** applies dual presolving for variables that are locked only once in a direction, and this locking is due to a
10582 * otherwise we would have to check for variables with nlocks == 0, and these are already processed by the
10594 /* search for a single-locked variable which can be multi-aggregated; if a valid continuous variable was found, we
10601 /* We only want to multi-aggregate variables, if they appear in maximal one additional constraint,
10603 * - If there are only two variables in the constraint from which the multi-aggregation arises, no fill-in will be
10605 * - If there are three variables in the constraint, multi-aggregation in three additional constraints will remove
10606 * six nonzeros (three from the constraint and the three entries of the multi-aggregated variable) and add
10608 * - If there at most four variables in the constraint, multi-aggregation in two additional constraints will remove
10609 * six nonzeros (four from the constraint and the two entries of the multi-aggregated variable) and add
10621 /* if this constraint has both sides, it also provides a lock for the other side and thus we can allow one more lock */
10659 /* better do not multi-aggregate binary variables, since most plugins rely on their binary variables to be either
10677 * - fix x_i to the smallest value for this constraint: x_i := lhs/a_i - \sum_{j \neq i} a_j/a_i * x_j
10681 * - fix x_i to the largest value for this constraint: x_i := lhs/a_i - \sum_{j \neq i} a_j/a_i * x_j
10685 * - fix x_i to the largest value for this constraint: x_i := rhs/a_i - \sum_{j \neq i} a_j/a_i * x_j
10689 * - fix x_i to the smallest value for this constraint: x_i := rhs/a_i - \sum_{j \neq i} a_j/a_i * x_j
10691 * but: all this is only applicable, if the aggregated value is inside x_i's bounds for all possible values
10696 && ((val > 0.0 && !SCIPisNegative(scip, obj) && SCIPvarGetNLocksDownType(var, SCIP_LOCKTYPE_MODEL) == 1
10698 || (val < 0.0 && !SCIPisPositive(scip, obj) && SCIPvarGetNLocksUpType(var, SCIP_LOCKTYPE_MODEL) == 1
10701 && ((val > 0.0 && !SCIPisPositive(scip, obj) && SCIPvarGetNLocksUpType(var, SCIP_LOCKTYPE_MODEL) == 1
10703 || (val < 0.0 && !SCIPisNegative(scip, obj) && SCIPvarGetNLocksDownType(var, SCIP_LOCKTYPE_MODEL) == 1
10717 consdataGetActivityResiduals(scip, consdata, var, val, FALSE, &minresactivity, &maxresactivity,
10730 calculateMinvalAndMaxval(scip, consdata->lhs, val, minresactivity, maxresactivity, &minval, &maxval);
10745 if( !isminsettoinfinity && SCIPisUpdateUnreliable(scip, minresactivity, consdata->lastminactivity) )
10753 if( !ismaxsettoinfinity && SCIPisUpdateUnreliable(scip, maxresactivity, consdata->lastmaxactivity) )
10765 /* check again if lhs/a_i - \sum_{j \neq i} a_j/a_i * x_j is always inside the bounds of x_i */
10766 calculateMinvalAndMaxval(scip, consdata->lhs, val, minresactivity, maxresactivity, &minval, &maxval);
10773 /* if the variable is integer, we have to check whether the integrality condition would always be satisfied
10776 if( !isint || (SCIPisIntegral(scip, consdata->lhs/val) && consdataIsResidualIntegral(scip, consdata, i, val)) )
10790 calculateMinvalAndMaxval(scip, consdata->rhs, val, minresactivity, maxresactivity, &minval, &maxval);
10805 if( !isminsettoinfinity && SCIPisUpdateUnreliable(scip, minresactivity, consdata->lastminactivity) )
10812 if( !ismaxsettoinfinity && SCIPisUpdateUnreliable(scip, maxresactivity, consdata->lastmaxactivity) )
10821 /* check again if rhs/a_i - \sum_{j \neq i} a_j/a_i * x_j is always inside the bounds of x_i */
10822 calculateMinvalAndMaxval(scip, consdata->rhs, val, minresactivity, maxresactivity, &minval, &maxval);
10828 /* if the variable is integer, we have to check whether the integrality condition would always be satisfied
10831 if( !isint || (SCIPisIntegral(scip, consdata->rhs/val) && consdataIsResidualIntegral(scip, consdata, i, val)) )
10868 SCIPdebugMsg(scip, "linear constraint <%s> (dual): multi-aggregate <%s> ==", SCIPconsGetName(cons), SCIPvarGetName(bestvar));
10904 SCIPdebugMsgPrint(scip, " %+.15g, bounds of <%s>: [%.15g,%.15g]\n", aggrconst, SCIPvarGetName(bestvar),
10919 SCIP_CALL( SCIPmultiaggregateVar(scip, bestvar, naggrs, aggrvars, aggrcoefs, aggrconst, &infeasible, &aggregated) );
10922 /* if the multi-aggregated bestvar is enforced but not strongly implied integral, we need to convert implied
10923 * integral to integer variables because integrality of the multi-aggregated variable must hold
10925 if( !infeasible && aggregated && SCIPvarGetType(bestvar) != SCIP_VARTYPE_CONTINUOUS && SCIPvarGetImplType(bestvar) != SCIP_IMPLINTTYPE_STRONG )
10931 /* if the multi-aggregation was not infeasible, then setting implied integral to integer should not
10934 if( SCIPvarGetType(aggrvars[j]) == SCIP_VARTYPE_CONTINUOUS || SCIPvarGetImplType(aggrvars[j]) != SCIP_IMPLINTTYPE_NONE )
10941 SCIP_CALL( SCIPchgVarImplType(scip, aggrvars[j], SCIP_IMPLINTTYPE_NONE, &infeasiblevartypechg) );
10955 SCIPdebugMsg(scip, "linear constraint <%s>: infeasible multi-aggregation\n", SCIPconsGetName(cons));
11185/** sorting method for constraint data, compares two variables on given indices, continuous variables will be sorted to
11186 * the end and for all other variables the sortation will be in non-increasing order of their absolute value of the
11217 /* for all non-continuous variables, the variables are sorted after decreasing absolute coefficients */
11223 * 1. lhs <= a^Tx <= rhs, x binary, lhs > 0, forall a_i >= lhs, a_i <= rhs, and forall pairs a_i + a_j > rhs,
11319/** tries to simplify coefficients and delete variables in constraints of the form lhs <= a^Tx <= rhs
11323 * for one-sided constraints there are several different coefficient reduction steps which will be applied
11325 * 1. We try to determine parts of the constraint which will not change anything on (in-)feasibility of the constraint
11331 * e.g. 5.2x1 + 5.1x2 + 3x3 <= 8.3 => will be changed to 5x1 + 5x2 + 3x3 <= 8 if all x are binary
11335 * e.g. 10x1 + 5y2 + 5x3 + 3x4 <= 15 => will be changed to 2x1 + y2 + x3 + x4 <= 3 if all xi are binary and y2 is
11417 /* @todo the following might be too hard, check which steps can be applied and what code must be corrected
11424 /* @todo: change the following: due to vartype changes, the status of the normalization can be wrong, need an event
11462 /* if we have a normalized inequality (not ranged) the one side should be positive, @see normalizeCons() */
11469 /* call sorting method, order continuous variables to the end and all other variables after non-increasing absolute
11483 assert(!consdata->validmaxabsval || SCIPisFeasEQ(scip, consdata->maxabsval, REALABS(vals[0])) || !SCIPvarIsIntegral(vars[nvars - 1]));
11493 if( SCIPisEQ(scip, REALABS(vals[0]), 1.0) && ((hasrhs && SCIPisIntegral(scip, rhs)) || (haslhs && SCIPisIntegral(scip, lhs))) )
11521 /* we now determine coefficients as large as the side of the constraint to retrieve a better reduction where we
11525 * c1: +5x1 + 5x2 + 3x3 + 3x4 + x5 >= 5 (x5 is redundant and does not change (in-)feasibility of this constraint)
11526 * c2: +4x1 + 4x2 + 3x3 + 3x4 + x5 >= 4 (gcd (without the coefficient of x5) after the large coefficients is 3
11527 * c3: +30x1 + 29x2 + 14x3 + 14z1 + 7x5 + 7x6 <= 30 (gcd (without the coefficient of x2) after the large coefficients is 7
11532 * c2: +6x1 + 6x2 + 3x3 + 3x4 + 3x5 >= 6 (will be changed to c2: +2x1 + 2x2 + x3 + x4 + x5 >= 2)
11533 * c3: +28x1 + 28x2 + 14x3 + 14z1 + 7x5 + 7x6 <= 28 (will be changed to c3: +4x1 + 4x2 + 2x3 + 2z1 + x5 + x6 <= 4)
11536 /* if the minimal activity is negative and we found more than one variable with a coefficient bigger than the left
11539 * e.g. 7x1 + 7x2 - 4x3 - 4x4 >= 7 => xi = 1 for all i is not a solution, but if we would do a change on the
11540 * coefficients due to the gcd on the "small" coefficients we would get 8x1 + 8x2 - 4x3 - 4x4 >= 8 were xi = 1
11551 /* if we have integer variable with "side"-coefficients but also with a lower bound greater than 0 we stop this
11563 /* easy and quick fix: if all coefficients were equal to the side, we cannot apply further simplifications */
11564 /* todo find numerically stable normalization conditions to scale this cons to have coefficients almost equal to 1 */
11576 /* all but one variable are processed or the next variable is continuous we cannot perform the extra coefficient
11603 /* find and remove redundant variables which do not interact with the (in-)feasibility of this constraint
11694 rredundant = hasrhs && maxactsub <= siderest && SCIPisFeasGT(scip, minactsub, siderest - gcd);
11695 lredundant = haslhs && SCIPisFeasLT(scip, maxactsub, siderest) && minactsub >= siderest - gcd;
11724 SCIPdebugMsg(scip, "stopped at pos %d (of %d), subactivities [%g, %g], redundant = %u, hasrhs = %u, siderest = %g, gcd = %" SCIP_LONGINT_FORMAT ", offset position for 'side' coefficients = %d\n",
11729 numericsok = REALABS(maxact) < MAXACTVAL && REALABS(maxactsub) < MAXACTVAL && REALABS(minact) < MAXACTVAL &&
11732 rredundant = hasrhs && maxactsub <= siderest && SCIPisFeasGT(scip, minactsub, siderest - gcd);
11733 lredundant = haslhs && SCIPisFeasLT(scip, maxactsub, siderest) && minactsub >= siderest - gcd;
11784 assert((hasrhs && SCIPisFeasLE(scip, tmpmaxactsub, siderest) && tmpminactsub > siderest - gcd) ||
11788 SCIPdebugMsg(scip, "removing %d last variables from constraint <%s>, because they never change anything on the feasibility of this constraint\n",
11888 /* if the greatest commmon divisor has become 1, we might have found the possible coefficient to change or we
11975 /* new coeffcient must not be zero if we would loose the implication that a variable needs to be 0 if
12001 if( (!notchangable && hasrhs && ((!SCIPisFeasIntegral(scip, rhs) || SCIPcalcGreComDiv(gcd, (SCIP_Longint)(rhs + feastol)) < gcd) && (SCIPcalcGreComDiv(gcd, (SCIP_Longint)(REALABS(vals[candpos]) + feastol)) == gcd))) ||
12002 ( haslhs && (!SCIPisFeasIntegral(scip, lhs) || SCIPcalcGreComDiv(gcd, (SCIP_Longint)(lhs + feastol)) < gcd) && (SCIPcalcGreComDiv(gcd, (SCIP_Longint)(REALABS(vals[candpos]) + feastol)) == gcd)) )
12054 /* @todo we still can remove continuous variables if they are redundant due to the non-integrality argument */
12070 /* check if the non-integrality part of all integral variables is smaller than the non-inegrality part of the right
12071 * hand side or bigger than the left hand side respectively, so we can make all of them integral
12075 if( (hasrhs && !SCIPisFeasIntegral(scip, rhs)) || (haslhs && !SCIPisFeasIntegral(scip, lhs)) )
12120 /* if we exceed the fractional part of the right hand side, we cannot tighten the coefficients
12213 /* the fractional part on each variable need to exceed the fractional part on the left hand side */
12313 /* maximal absolute value of coefficients in constraint is one, so we cannot tighten it further */
12330 if( SCIPisEQ(scip, REALABS(vals[nvars - 1]), 1.0) && SCIPisEQ(scip, REALABS(vals[nvars - 2]), 1.0) )
12335 /* calculate greatest common divisor over all integer variables; note that the onlybin flag needs to be recomputed
12357 /* arithmetic precision can lead to the absolute value only being integral up to feasibility tolerance,
12358 * even though the value itself is feasible up to epsilon, but since we add feastol later, this is enough
12379 /* we need at least one binary variable and a gcd greater than 1 to try to perform further coefficient changes */
12388 /* calculate greatest common divisor over all integer and binary variables and determine the candidate where we might
12396 /* arithmetic precision can lead to the absolute value only being integral up to feasibility tolerance,
12397 * even though the value itself is feasible up to epsilon, but since we add feastol later, this is enough
12414 /* if the greatest commmon divisor has become 1, we might have found the possible coefficient to change or we
12425 /* if we have only binary variables and both first coefficients have a gcd of 1, both are candidates for
12459 /* we should have found one coefficient, that led to a gcd of 1, otherwise we could normalize the constraint
12467 /* check again, if we have a normalized inequality (not ranged) the one side should be positive,
12523 assert(SCIPisZero(scip, newcoef) || SCIPcalcGreComDiv(gcd, (SCIP_Longint)(REALABS(newcoef) + feastol)) == gcd);
12525 SCIPdebugMsg(scip, "gcd = %" SCIP_LONGINT_FORMAT ", rest = %" SCIP_LONGINT_FORMAT ", restcoef = %" SCIP_LONGINT_FORMAT "; changing coef of variable <%s> to %g and %s by %" SCIP_LONGINT_FORMAT "\n", gcd, rest, restcoef, SCIPvarGetName(vars[candpos]), newcoef, hasrhs ? "reduced rhs" : "increased lhs", hasrhs ? rest : (rest > 0 ? gcd - rest : 0));
12556 SCIPdebugMsg(scip, "we did %d coefficient changes and %d side changes on constraint %s when applying one round of the gcd algorithm\n", *nchgcoefs - oldnchgcoefs, *nchgsides - oldnchgsides, SCIPconsGetName(cons));
12564/** tries to aggregate an (in)equality and an equality in order to decrease the number of variables in the (in)equality:
12566 * where a = val1[v] and b = -val0[v] for common variable v which removes most variable weight;
12568 * the variable weight is a weighted sum over all included variables, where each binary variable weighs BINWEIGHT,
12569 * each integer or implied integral variable weighs INTWEIGHT and each continuous variable weighs CONTWEIGHT
12578 int* diffidx0minus1, /**< array with indices of variables in cons0, that don't appear in cons1 */
12579 int* diffidx1minus0, /**< array with indices of variables in cons1, that don't appear in cons0 */
12582 int diffidx0minus1weight, /**< variable weight sum of variables in cons0, that don't appear in cons1 */
12583 int diffidx1minus0weight, /**< variable weight sum of variables in cons1, that don't appear in cons0 */
12584 SCIP_Real maxaggrnormscale, /**< maximal allowed relative gain in maximum norm for constraint aggregation */
12598 SCIP_Bool commonvarlindependent; /* indicates whether coefficient vector of common variables in linearly dependent */
12624 SCIPdebugMsg(scip, "try aggregation of <%s> and <%s>\n", SCIPconsGetName(cons0), SCIPconsGetName(cons1));
12660 /* count the number of variables in the potential new constraint a * consdata0 + b * consdata1 */
12685 * v's common coefficient in cons1 / v's common coefficient in cons0 should be constant, i.e., equal 0's common coefficient in cons1 / 0's common coefficient in cons0
12753 /* setup best* variables that were not setup above because we are in the commonvarlindependent case */
12758 SCIPdebugMsg(scip, "aggregate linear constraints <%s> := %.15g*<%s> + %.15g*<%s> -> nvars: %d -> %d, weight: %d -> %d\n",
12789 /* if we recognized linear dependency of the common coefficients, then the aggregation coefficient should be 0.0 for every common variable */
12842 SCIP_CALL( SCIPcreateConsLinear(scip, &newcons, SCIPconsGetName(cons0), newnvars, newvars, newvals, newlhs, newrhs,
12859 if( !(*infeasible) && consdataGetMaxAbsval(SCIPconsGetData(newcons)) <= maxaggrnormscale * consdataGetMaxAbsval(consdata0) )
12894/** returns TRUE iff both keys are equal; two constraints are equal if they have the same variables and the
13000/** returns the key for deciding which of two parallel constraints should be kept (smaller key should be kept);
13001 * prefers non-upgraded constraints and as second criterion the constraint with the smallest position
13015 return (((unsigned int)consdata->upgraded)<<31) + (unsigned int)SCIPconsGetPos(cons); /*lint !e571*/
13025 SCIP_CONS** querycons, /**< pointer to linear constraint used to look for duplicates in the hash table;
13038 while( (parallelcons = (SCIP_CONS*)SCIPhashtableRetrieve(hashtable, (void*)(*querycons))) != NULL )
13080/** compares each constraint with all other constraints for possible redundancy and removes or changes constraint
13141 /* get constraints from current hash table with same variables as cons0 and with coefficients equal
13142 * to the ones of cons0 when both are scaled such that maxabsval is 1.0 and the coefficient of the
13177 /* constraint found: create a new constraint with same coefficients and best left and right hand side;
13210 SCIPdebugMsg(scip, "aggregate linear constraints <%s> and <%s> with equal coefficients into single ranged row\n",
13224 SCIPdebugMsg(scip, "aggregate linear constraints <%s> and <%s> with negated coefficients into single ranged row\n",
13236 /* update flags of constraint which caused the redundancy s.t. nonredundant information doesn't get lost */
13248 SCIPdebugMsg(scip, "aggregated linear constraint <%s> is infeasible\n", SCIPconsGetName(cons0));
13253 /* ensure that lhs <= rhs holds without tolerances as we only allow such rows to enter the LP */
13293 SCIP_Real maxaggrnormscale, /**< maximal allowed relative gain in maximum norm for constraint aggregation */
13357 for( c = (cons0changed ? 0 : firstchange); c < chkind && !(*cutoff) && conss[chkind] != NULL; ++c )
13396 /* SCIPdebugMsg(scip, "preprocess linear constraint pair <%s>[chgd:%d, upgd:%d] and <%s>[chgd:%d, upgd:%d]\n",
13423 && ((possignature0 | possignature1) == possignature1) /* possignature0 <= possignature1 (as bit vector) */
13424 && ((negsignature0 | negsignature1) == negsignature0); /* negsignature0 >= negsignature1 (as bit vector) */
13426 && ((possignature0 | possignature1) == possignature0) /* possignature0 >= possignature1 (as bit vector) */
13427 && ((negsignature0 | negsignature1) == negsignature1); /* negsignature0 <= negsignature1 (as bit vector) */
13429 && ((possignature0 | possignature1) == possignature0) /* possignature0 >= possignature1 (as bit vector) */
13430 && ((negsignature0 | negsignature1) == negsignature1); /* negsignature0 <= negsignature1 (as bit vector) */
13432 && ((possignature0 | possignature1) == possignature1) /* possignature0 <= possignature1 (as bit vector) */
13433 && ((negsignature0 | negsignature1) == negsignature0); /* negsignature0 >= negsignature1 (as bit vector) */
13448 * - if lhs0 >= lhs1 and for each variable v and each solution value x_v val0[v]*x_v <= val1[v]*x_v,
13450 * - if rhs0 <= rhs1 and for each variable v and each solution value x_v val0[v]*x_v >= val1[v]*x_v,
13452 * - if val0[v] == -val1[v] for all variables v, the two inequalities can be replaced by a single
13454 * - if at least one constraint is an equality, count the weighted number of common variables W_c
13455 * and the weighted number of variable in the difference sets W_0 = w(V_0 \ V_1), W_1 = w(V_1 \ V_0),
13456 * where the weight of each variable depends on its type, such that aggregations in order to remove the
13458 * - if W_c > W_1, try to aggregate consdata0 := a * consdata0 + b * consdata1 in order to decrease the
13459 * variable weight in consdata0, where a = +/- val1[v] and b = -/+ val0[v] for common v which leads to
13460 * the smallest weight; for numerical stability, we will only accept integral a and b; the sign of a has
13462 * - if W_c > W_0, try to aggregate consdata1 := a * consdata1 + b * consdata0 in order to decrease the
13463 * variable weight in consdata1, where a = +/- val0[v] and b = -/+ val1[v] for common v which leads to
13464 * the smallest weight; for numerical stability, we will only accept integral a and b; the sign of a has
13598 /* the coefficients in both rows are either equal or negated: create a new constraint with same coefficients and
13601 SCIPdebugMsg(scip, "aggregate linear constraints <%s> and <%s> with %s coefficients into single ranged row\n",
13620 SCIPdebugMsg(scip, "aggregated linear constraint <%s> is infeasible\n", SCIPconsGetName(cons0));
13661 /* update flags of constraint which caused the redundancy s.t. nonredundant information doesn't get lost */
13673 /* check for domination: remove dominated sides, but don't touch equalities as long as they are not totally
13676 if( cons1dominateslhs && (!cons0isequality || cons1dominatesrhs || SCIPisInfinity(scip, consdata0->rhs) ) )
13687 SCIPdebugMsg(scip, "linear constraints <%s> and <%s> are infeasible\n", SCIPconsGetName(cons0), SCIPconsGetName(cons1));
13700 /* update flags of constraint which caused the redundancy s.t. nonredundant information doesn't get lost */
13707 else if( cons0dominateslhs && (!cons1isequality || cons0dominatesrhs || SCIPisInfinity(scip, consdata1->rhs)) )
13718 SCIPdebugMsg(scip, "linear constraints <%s> and <%s> are infeasible\n", SCIPconsGetName(cons0), SCIPconsGetName(cons1));
13730 /* update flags of constraint which caused the redundancy s.t. nonredundant information doesn't get lost */
13737 if( cons1dominatesrhs && (!cons0isequality || cons1dominateslhs || SCIPisInfinity(scip, -consdata0->lhs)) )
13748 SCIPdebugMsg(scip, "linear constraints <%s> and <%s> are infeasible\n", SCIPconsGetName(cons0), SCIPconsGetName(cons1));
13761 /* update flags of constraint which caused the redundancy s.t. nonredundant information doesn't get lost */
13768 else if( cons0dominatesrhs && (!cons1isequality || cons0dominateslhs || SCIPisInfinity(scip, -consdata1->lhs)) )
13779 SCIPdebugMsg(scip, "linear constraints <%s> and <%s> are infeasible\n", SCIPconsGetName(cons0), SCIPconsGetName(cons1));
13791 /* update flags of constraint which caused the redundancy s.t. nonredundant information doesn't get lost */
13808 /* update flags of constraint which caused the redundancy s.t. nonredundant information doesn't get lost */
13823 /* update flags of constraint which caused the redundancy s.t. nonredundant information doesn't get lost */
13845 SCIP_CALL( aggregateConstraints(scip, cons0, cons1, commonidx0, commonidx1, diffidx0minus1, diffidx1minus0,
13860 if( !aggregated && cons0isequality && !consdata1->upgraded && commonidxweight > diffidx0minus1weight )
13863 SCIP_CALL( aggregateConstraints(scip, cons1, cons0, commonidx1, commonidx0, diffidx1minus0, diffidx0minus1,
13895 SCIP_Bool singletonstuffing, /**< should stuffing of singleton continuous variables be performed? */
13896 SCIP_Bool singlevarstuffing, /**< should single variable stuffing be performed, which tries to fulfill
13942 consdataGetActivityBounds(scip, consdata, FALSE, &minactivity, &maxactivity, &isminacttight, &ismaxacttight,
13953 /* we want to have a <= constraint, if the rhs is infinite, we implicitly multiply the constraint by -1,
13982 && SCIPvarGetNLocksUpType(var, SCIP_LOCKTYPE_MODEL) + SCIPvarGetNLocksDownType(var, SCIP_LOCKTYPE_MODEL) == 1 )
14016 && SCIPvarGetNLocksUpType(var, SCIP_LOCKTYPE_MODEL) + SCIPvarGetNLocksDownType(var, SCIP_LOCKTYPE_MODEL) == 1 )
14112 if( tryfixing && nsingletons > 0 && (SCIPisGT(scip, rhs, maxcondactivity) || SCIPisLE(scip, rhs, mincondactivity)) )
14173 /* @note: we could in theory tighten the bound of the first singleton variable which does not fall into the above case,
14174 * since it cannot be fully fixed. However, this is not needed and should be done by activity-based bound tightening
14175 * anyway after all other continuous singleton columns were fixed; doing it here may introduce numerical
14220 * setting all variables to their upper bound (giving us the maximal activity of the constraint) is worst w.r.t.
14221 * feasibility of the constraint. On the other hand, this gives the best objective function contribution of the
14222 * variables contained in the constraint. The maximal activity should be larger than the rhs, otherwise the constraint
14224 * Now we are searching for a variable x_k with maximal ratio c_k / a_k (note that all these ratios are negative), so
14225 * that by reducing the value of this variable we reduce the activity of the constraint while having the smallest
14226 * objective deterioration per activity unit. If x_k has no downlocks, is continuous, and can be reduced enough to
14227 * render the constraint feasible, and ALL other variables have only the one uplock installed by the current constraint,
14228 * we can reduce the upper bound of x_k such that the maxactivity equals the rhs and fix all other variables to their
14230 * Note that the others variables may have downlocks from other constraints, which we do not need to care
14231 * about since we are setting them to the highest possible value. Also, they may be integer or binary, because the
14232 * computed ratio is still a lower bound on the change in the objective caused by reducing those variable to reach
14233 * constraint feasibility. On the other hand, uplocks on x_k from other constraint do no interfer with the method.
14234 * With a slight adjustment, the procedure even works for integral x_k. If (maxactivity - rhs)/val is integral,
14235 * the variable gets an integral value in order to fulfill the constraint tightly, and we can just apply the procedure.
14236 * If (maxactivity - rhs)/val is fractional, we need to check, if overfulfilling the constraint by setting x_k to
14237 * ceil((maxactivity - rhs)/val) is still better than setting x_k to ceil((maxactivity - rhs)/val) - 1 and
14238 * filling the remaining gap in the constraint with the next-best variable. For this, we check that
14240 * c_k * floor((maxactivity - rhs)/val) + c_j * ((maxactivity - rhs) - (floor((maxactivity - rhs)/val) * val))/a_j.
14242 * If there are variables with a_i < 0 and c_i > 0, they are negated to obtain the above form, variables with same
14269 /* if both objective and constraint push the variable to the same direction, we can do nothing here */
14291 if( ratio > bestratio || ( downlocks == 0 && ratio == bestratio && ( bestdownlocks > 0 /*lint !e777*/
14355 /* the best variable is integer, and we need to overfulfill the constraint when using just the variable */
14383 SCIPdebugMsg(scip, "tighten the lower bound of <%s> from %g to %g (ub=%g)\n", SCIPvarGetName(var), lb, lb + bounddelta, ub);
14392 /* the best variable is integer, and we need to overfulfill the constraint when using just the variable */
14420 SCIPdebugMsg(scip, "tighten the upper bound of <%s> from %g to %g (lb=%g)\n", SCIPvarGetName(var), ub, ub - bounddelta, lb);
14435 SCIPdebugMsg(scip, "cons <%s>: %g <=\n", SCIPconsGetName(cons), factor > 0 ? consdata->lhs : -consdata->rhs);
14438 SCIPdebugMsg(scip, "%+g <%s>([%g,%g],%g,[%d,%d],%s)\n", factor * vals[v], SCIPvarGetName(vars[v]),
14471 SCIPdebug( SCIPdebugMsg(scip, "### new stuffing fixed %d vars, tightened %d bounds\n", *nfixedvars - oldnfixedvars, *nchgbds - oldnchgbds); )
14506 * redlb[v] == k : if x_v >= k, we can always round x_v down to x_v == k without violating any constraint
14507 * redub[v] == k : if x_v <= k, we can always round x_v up to x_v == k without violating any constraint
14520 * This is because then, the value of the variable is either determined by one of its bounds or
14542 /* copy the variable array since this array might change during the curse of this algorithm */
14564 /* Initialize isimplint array: variable may be implied integral if rounded to their best bound they are integral
14582 isimplint[v] = (SCIPisInfinity(scip, -lb) || SCIPisIntegral(scip, lb)) && (SCIPisInfinity(scip, ub) || SCIPisIntegral(scip, ub));
14598 /* we only need to consider constraints that have been locked (i.e., checked constraints or constraints that are
14632 assert(0 <= contv && contv < ncontvars); /* variable should be active due to applyFixings() */
14686 consdataGetGlbActivityResiduals(scip, consdata, var, val, FALSE, &minresactivity, &maxresactivity,
14696 if( !isminsettoinfinity && SCIPisUpdateUnreliable(scip, minresactivity, consdata->lastglbminactivity) )
14700 if( !ismaxsettoinfinity && SCIPisUpdateUnreliable(scip, maxresactivity, consdata->lastglbmaxactivity) )
14706 assert(0 <= arrayindex && arrayindex < nvars); /* variable should be active due to applyFixings() */
14775 /* there is more than one continuous variable or the integer variables have fractional coefficients:
14793 /* there is exactly one continuous variable and the integer variables have integral coefficients:
14794 * this is the interesting case, and we have to check whether the coefficient is +/-1 and the corresponding
14847 * if variable is cost neutral and only upper bounded non-positively or negative largest bound to make
14850 if( ( SCIPisPositive(scip, obj) || SCIPisPositive(scip, SCIPvarGetUbGlobal(var)) || !SCIPisInfinity(scip, -SCIPvarGetLbGlobal(var)) )
14857 /* if x_v >= redlb[v], we can always round x_v down to x_v == redlb[v] without violating any constraint
14860 SCIPdebugMsg(scip, "variable <%s> only locked down in linear constraints: dual presolve <%s>[%.15g,%.15g] <= %.15g\n",
14876 * if variable is cost neutral and only lower bounded non-negatively or positive smallest bound to make
14879 if( ( SCIPisPositive(scip, -obj) || SCIPisPositive(scip, -SCIPvarGetLbGlobal(var)) || !SCIPisInfinity(scip, SCIPvarGetUbGlobal(var)) )
14886 /* if x_v <= redub[v], we can always round x_v up to x_v == redub[v] without violating any constraint
14889 SCIPdebugMsg(scip, "variable <%s> only locked up in linear constraints: dual presolve <%s>[%.15g,%.15g] >= %.15g\n",
14930 SCIPdebugMsg(scip, "infeasible upgrade of variable <%s> to integral type, domain is empty\n", SCIPvarGetName(var));
14936 SCIPdebugMsg(scip, "dual presolve: declare continuous variable <%s>[%g,%g] implied integral\n",
14982 SCIPdebugMsg(scip, "Enforcement method of linear constraints for %s solution\n", sol == NULL ? "LP" : "relaxation");
15021 SCIPdebugMsg(scip, "-> constraints checked, %s\n", *result == SCIP_FEASIBLE ? "all constraints feasible" : "infeasibility detected");
15067 SCIP_CALL( SCIPgetSymActiveVariables(scip, symtype, &vars, &vals, &nlocvars, &constant, SCIPisTransformed(scip)) );
15115/** destructor of constraint handler to free constraint handler data (called when SCIP is exiting) */
15165/** deinitialization method of constraint handler (called before transformed problem is freed) */
15208 return !(SCIPisEQ(scip, lhs, rhs) || SCIPisInfinity(scip, -lhs) || SCIPisInfinity(scip, rhs) );
15225 * iterates through all linear constraints and stores relevant statistics in the linear constraint statistics \p linconsstats.
15227 * @note only constraints are iterated that belong to the linear constraint handler. If the problem has been presolved already,
15228 * constraints that were upgraded to more special types such as, e.g., varbound constraints, will not be shown correctly anymore.
15229 * Similarly, if specialized constraints were created through the API, these are currently not present.
15315 SCIPlinConsStatsIncTypeCount(linconsstats, SCIP_LINCONSTYPE_SINGLETON, isRangedRow(scip, lhs, rhs) ? 2 : 1);
15333 /* precedence constraints have same variable type and same absolute coefficient with opposite sign */
15339 SCIPlinConsStatsIncTypeCount(linconsstats, SCIP_LINCONSTYPE_PRECEDENCE, isRangedRow(scip, lhs, rhs) ? 2 : 1);
15349 SCIPlinConsStatsIncTypeCount(linconsstats, SCIP_LINCONSTYPE_VARBOUND, isRangedRow(scip, lhs, rhs) ? 2 : 1);
15355 /* is constraint of type SCIP_CONSTYPE_{SETPARTITION, SETPACKING, SETCOVERING, CARDINALITY, INVKNAPSACK}? */
15367 /* scan through variables and detect if all variables are binary and have a coefficient +/-1 */
15443 /* if both sides are infinite at this point, no further classification is necessary for this constraint */
15494 SCIPlinConsStatsIncTypeCount(linconsstats, matched ? SCIP_LINCONSTYPE_BINPACKING : SCIP_LINCONSTYPE_KNAPSACK, 1);
15497 /* check if finite left hand side allows for a second classification, relax already used right hand side */
15529 /* check if finite left hand side allows for a second classification, relax already used right hand side */
15554 SCIPlinConsStatsIncTypeCount(linconsstats, SCIP_LINCONSTYPE_MIXEDBINARY, isRangedRow(scip, lhs, rhs) ? 2 : 1);
15563 SCIPlinConsStatsIncTypeCount(linconsstats, SCIP_LINCONSTYPE_GENERAL, isRangedRow(scip, lhs, rhs) ? 2 : 1);
15570/** presolving deinitialization method of constraint handler (called after presolving has been finished) */
15616 SCIPstatisticMessage("below threshold: %d / %d ratio= %g\n", ngoodconss, nallconss, (100.0 * ngoodconss / nallconss));
15632 /* this is no problem reduction, because the upgraded constraint was added to the problem before, and the
15633 * (redundant) linear constraint was only kept in order to support presolving the the linear constraint handler
15639 /* since we are not allowed to detect infeasibility in the exitpre stage, we dont give an infeasible pointer */
15664/** solving process deinitialization method of constraint handler (called before branch and bound process data is freed) */
15704 "(restart) converted %d cuts from the global cut pool into linear constraints\n", ncutsadded);
15705 /* an extra blank line should be printed separately since the buffer message handler only handles up to one
15823 SCIP_CALL( consdataCreate(scip, &targetdata, sourcedata->nvars, sourcedata->vars, sourcedata->vals, sourcedata->lhs,
15827 /* if this is a checked or enforced constraints, then there must be no relaxation-only variables */
15837 SCIP_CALL( SCIPcreateCons(scip, targetcons, SCIPconsGetName(sourcecons), conshdlr, targetdata,
15838 SCIPconsIsInitial(sourcecons), SCIPconsIsSeparated(sourcecons), SCIPconsIsEnforced(sourcecons),
15841 SCIPconsIsDynamic(sourcecons), SCIPconsIsRemovable(sourcecons), SCIPconsIsStickingAtNode(sourcecons)) );
15847/** LP initialization method of constraint handler (called before the initial LP relaxation at a node is solved) */
15900 if( (depth == 0 && conshdlrdata->maxroundsroot >= 0 && nrounds >= conshdlrdata->maxroundsroot)
15923 SCIP_CALL( separateCons(scip, conss[c], conshdlrdata, NULL, separatecards, conshdlrdata->separateall, &ncuts, &cutoff) );
15966 if( (depth == 0 && conshdlrdata->maxroundsroot >= 0 && nrounds >= conshdlrdata->maxroundsroot)
15981 SCIP_CALL( separateCons(scip, conss[c], conshdlrdata, sol, TRUE, conshdlrdata->separateall, &ncuts, &cutoff) );
16057 SCIPdebugMsg(scip, "-> constraints checked, %s\n", *result == SCIP_FEASIBLE ? "all constraints feasible" : "infeasibility detected");
16111 SCIPinfoMessage(scip, NULL, "violation: left hand side is violated by %.15g\n", consdata->lhs - activity);
16113 SCIPinfoMessage(scip, NULL, "violation: right hand side is violated by %.15g\n", activity - consdata->rhs);
16144 /* check, if we want to tighten variable's bounds (in probing, we always want to tighten the bounds) */
16158 && ((tightenboundsfreq == 0 && depth == 0) || (tightenboundsfreq >= 1 && (depth % tightenboundsfreq == 0)));
16166 && ((rangedrowfreq == 0 && depth == 0) || (rangedrowfreq >= 1 && (depth % rangedrowfreq == 0)));
16294 /* remember the first constraint that was not yet tried to be upgraded, to begin the next upgrading round with */
16307 /* apply presolving as long as possible on the single constraint (however, abort after a certain number of rounds
16349 SCIP_CALL( tightenBounds(scip, cons, conshdlrdata->maxeasyactivitydelta, conshdlrdata->sortvars, &cutoff, nchgbds) );
16358 /* if the maximal coefficient is large, recompute the activities before infeasibility and redundancy checks */
16367 consdataGetActivityBounds(scip, consdata, TRUE, &minactivity, &maxactivity, &isminacttight, &ismaxacttight,
16371 if( SCIPisFeasGT(scip, minactivity, consdata->rhs) || SCIPisFeasLT(scip, maxactivity, consdata->lhs) )
16373 SCIPdebugMsg(scip, "linear constraint <%s> is infeasible: activitybounds=[%.15g,%.15g], sides=[%.15g,%.15g]\n",
16378 else if( SCIPisGE(scip, minactivity, consdata->lhs) && SCIPisLE(scip, maxactivity, consdata->rhs) )
16380 SCIPdebugMsg(scip, "linear constraint <%s> is redundant: activitybounds=[%.15g,%.15g], sides=[%.15g,%.15g]\n",
16389 else if( !SCIPisInfinity(scip, -consdata->lhs) && SCIPisGE(scip, minactivity, consdata->lhs) )
16391 SCIPdebugMsg(scip, "linear constraint <%s> left hand side is redundant: activitybounds=[%.15g,%.15g], sides=[%.15g,%.15g]\n",
16399 SCIPdebugMsg(scip, "linear constraint <%s> right hand side is redundant: activitybounds=[%.15g,%.15g], sides=[%.15g,%.15g]\n",
16428 /* reduce big-M coefficients, that make the constraint redundant if the variable is on a bound */
16471 SCIP_CALL( extractCliques(scip, cons, conshdlrdata->maxeasyactivitydelta, conshdlrdata->sortvars,
16499 SCIP_CALL( convertEquality(scip, cons, conshdlrdata, &cutoff, nfixedvars, naggrvars, ndelconss, nchgvartypes) );
16503 if( !cutoff && SCIPconsIsActive(cons) && conshdlrdata->dualpresolving && SCIPallowStrongDualReds(scip) )
16505 SCIP_CALL( dualPresolve(scip, conshdlrdata, cons, &cutoff, nfixedvars, naggrvars, ndelconss, nchgvartypes) );
16518 /* remember the first constraint that was not yet tried to be upgraded, to begin the next upgrading round with */
16525 (conshdlrdata->singletonstuffing || conshdlrdata->singlevarstuffing) && SCIPallowStrongDualReds(scip) )
16557 if( !cutoff && (presoltiming & SCIP_PRESOLTIMING_EXHAUSTIVE) != 0 && (conshdlrdata->presolusehashing || conshdlrdata->presolpairwise) && !SCIPisStopped(scip) )
16563 /* detect redundant constraints; fast version with hash table instead of pairwise comparison */
16564 SCIP_CALL( detectRedundantConstraints(scip, SCIPblkmem(scip), conss, nconss, &firstchange, &cutoff,
16607 npaircomparisons += (SCIPconsGetData(conss[c])->changed) ? c : (c - firstchange); /*lint !e776*/
16610 SCIP_CALL( preprocessConstraintPairs(scip, usefulconss, firstchange, c, conshdlrdata->maxaggrnormscale,
16616 if( ((*ndelconss - oldndelconss) + (*nchgsides - oldnchgsides)/2.0 + (*nchgcoefs - oldnchgcoefs)/10.0) / ((SCIP_Real) npaircomparisons) < conshdlrdata->mingainpernmincomp )
16629 /* before upgrading, check whether we can apply some additional dual presolving, because a variable only appears
16633 && *nfixedvars == oldnfixedvars && *naggrvars == oldnaggrvars && *nchgbds == oldnchgbds && *ndelconss == oldndelconss
16644 * only upgrade constraints, if no reductions were found in this round (otherwise, the linear constraint handler
16645 * may find additional reductions before giving control away to other (less intelligent?) constraint handlers)
16647 if( !cutoff && (presoltiming & SCIP_PRESOLTIMING_EXHAUSTIVE) != 0 && SCIPisPresolveFinished(scip) )
16660 /* only upgrade completely presolved constraints, that changed since the last upgrading call */
16686 * delete upgraded equalities, if we don't need it anymore for aggregation and redundancy checking
16702 else if( *nfixedvars > oldnfixedvars || *naggrvars > oldnaggrvars || *nchgbds > oldnchgbds || *ndelconss > oldndelconss
16720 SCIP_CALL( resolvePropagation(scip, cons, infervar, intToInferInfo(inferinfo), boundtype, bdchgidx, result) );
16826 SCIP_CALL( SCIPcopyConsLinear(scip, cons, sourcescip, consname, nvars, sourcevars, sourcecoefs,
16827 SCIPgetLhsLinear(sourcescip, sourcecons), SCIPgetRhsLinear(sourcescip, sourcecons), varmap, consmap,
16828 initial, separate, enforce, check, propagate, local, modifiable, dynamic, removable, stickingatnode, global, valid) );
16838 * There should only be one operator, except for ranged rows for which exactly two operators '<=' must be present.
16895 /* assign the found operator to the first or second pointer and check for violations of the linear constraint grammar */
16976 /* find operators in the line first, all other remaining parsing depends on occurence of the operators '<=', '>=', '==',
16986 /* assign the strings for parsing the left hand side, right hand side, and the linear variable sum */
17027 SCIPerrorMessage("Parsing has wrong operator character '%c', should be one of <=>[", *firstop);
17062 SCIP_CALL( SCIPparseVarsLinearsum(scip, varstrptr, vars, coefs, &nvars, coefssize, &requsize, &endptr, success) );
17071 SCIP_CALL( SCIPparseVarsLinearsum(scip, varstrptr, vars, coefs, &nvars, coefssize, &requsize, &endptr, success) );
17072 assert(!*success || requsize <= coefssize); /* if successful, then should have had enough space now */
17082 initial, separate, enforce, check, propagate, local, modifiable, dynamic, removable, stickingatnode) );
17115/** constraint method of constraint handler which returns the number of variables (if possible) */
17131/** constraint handler method which returns the permutation symmetry detection graph of a constraint */
17140/** constraint handler method which returns the signed permutation symmetry detection graph of a constraint */
17215 /* bound change can turn the constraint infeasible or redundant only if it was a tightening */
17220 /* reset maximal activity delta, so that it will be recalculated on the next real propagation */
17233 if( (val > 0.0 ? !SCIPisInfinity(scip, consdata->rhs) : !SCIPisInfinity(scip, -consdata->lhs)) )
17237 if( (val > 0.0 ? !SCIPisInfinity(scip, -consdata->lhs) : !SCIPisInfinity(scip, consdata->rhs)) )
17276 /* reset maximal activity delta, so that it will be recalculated on the next real propagation */
17285 /* there is only one lock left: we may multi-aggregate the variable as slack of an equation */
17316 /* if the variable is binary but not fixed it had to become binary due to this global change */
17317 if( SCIPvarIsBinary(var) && SCIPisGT(scip, SCIPvarGetUbGlobal(var), SCIPvarGetLbGlobal(var)) )
17330 consdata->presolved = (consdata->presolved && (SCIPeventGetOldtype(event) != SCIP_VARTYPE_CONTINUOUS || SCIPvarIsImpliedIntegral(var)));
17333 consdata->indexsorted = (consdata->indexsorted && SCIPvarIsBinary(var) && (SCIPeventGetOldtype(event) != SCIP_VARTYPE_CONTINUOUS || SCIPvarIsImpliedIntegral(var)));
17340 consdata->presolved = (consdata->presolved && (SCIPeventGetOldImpltype(event) != SCIP_IMPLINTTYPE_NONE || SCIPvarGetType(var) != SCIP_VARTYPE_CONTINUOUS));
17343 consdata->indexsorted = (consdata->indexsorted && SCIPvarIsBinary(var) && (SCIPeventGetOldImpltype(event) != SCIP_IMPLINTTYPE_NONE || SCIPvarGetType(var) != SCIP_VARTYPE_CONTINUOUS));
17383 /* create array of variables and coefficients: sum_{i \in P} x_i - sum_{i \in N} x_i >= 1 - |N| */
17415 (void) SCIPsnprintf(consname, SCIP_MAXSTRLEN, "cf%" SCIP_LONGINT_FORMAT, SCIPgetNConflictConssApplied(scip));
17416 SCIP_CALL( SCIPcreateConsLinear(scip, &cons, consname, nbdchginfos, vars, vals, lhs, SCIPinfinity(scip),
17419 /* try to automatically convert a linear constraint into a more specific and more specialized constraint */
17463 * (unless the expression is a variable or a constant or a constant*variable, but these are simplified away in cons_nonlinear)
17474 lhs = SCIPisInfinity(scip, -SCIPgetLhsNonlinear(cons)) ? -SCIPinfinity(scip) : (SCIPgetLhsNonlinear(cons) - SCIPgetConstantExprSum(expr));
17475 rhs = SCIPisInfinity(scip, SCIPgetRhsNonlinear(cons)) ? SCIPinfinity(scip) : (SCIPgetRhsNonlinear(cons) - SCIPgetConstantExprSum(expr));
17491 SCIP_CALL( SCIPaddCoefLinear(scip, upgdconss[0], SCIPgetVarExprVar(SCIPexprGetChildren(expr)[i]), SCIPgetCoefsExprSum(expr)[i]) );
17494 /* check violation of this linear constraint with absolute tolerances, to be consistent with the original nonlinear constraint */
17526 SCIP_CALL( SCIPincludeConflicthdlrBasic(scip, &conflicthdlr, CONFLICTHDLR_NAME, CONFLICTHDLR_DESC, CONFLICTHDLR_PRIORITY,
17556 SCIP_CALL( SCIPsetConshdlrPresol(scip, conshdlr, consPresolLinear, CONSHDLR_MAXPREROUNDS, CONSHDLR_PRESOLTIMING) );
17558 SCIP_CALL( SCIPsetConshdlrProp(scip, conshdlr, consPropLinear, CONSHDLR_PROPFREQ, CONSHDLR_DELAYPROP,
17561 SCIP_CALL( SCIPsetConshdlrSepa(scip, conshdlr, consSepalpLinear, consSepasolLinear, CONSHDLR_SEPAFREQ,
17566 SCIP_CALL( SCIPsetConshdlrGetSignedPermsymGraph(scip, conshdlr, consGetSignedPermsymGraphLinear) );
17571 SCIP_CALL( SCIPincludeConsUpgradeNonlinear(scip, upgradeConsNonlinear, NONLINCONSUPGD_PRIORITY, TRUE, CONSHDLR_NAME) );
17577 "multiplier on propagation frequency, how often the bounds are tightened (-1: never, 0: only at root)",
17578 &conshdlrdata->tightenboundsfreq, TRUE, DEFAULT_TIGHTENBOUNDSFREQ, -1, SCIP_MAXTREEDEPTH, NULL, NULL) );
17613 "maximal allowed relative gain in maximum norm for constraint aggregation (0.0: disable constraint aggregation)",
17614 &conshdlrdata->maxaggrnormscale, TRUE, DEFAULT_MAXAGGRNORMSCALE, 0.0, SCIP_REAL_MAX, NULL, NULL) );
17617 "maximum activity delta to run easy propagation on linear constraint (faster, but numerically less stable)",
17618 &conshdlrdata->maxeasyactivitydelta, TRUE, DEFAULT_MAXEASYACTIVITYDELTA, 0.0, SCIP_REAL_MAX, NULL, NULL) );
17621 "maximal relative distance from current node's dual bound to primal bound compared to best node's dual bound for separating knapsack cardinality cuts",
17625 "should all constraints be subject to cardinality cut generation instead of only the ones with non-zero dual value?",
17645 "should single variable stuffing be performed, which tries to fulfill constraints using the cheapest variable?",
17648 "constraints/" CONSHDLR_NAME "/sortvars", "apply binaries sorting in decr. order of coeff abs value?",
17652 "should the violation for a constraint with side 0.0 be checked relative to 1.0 (FALSE) or to the maximum absolute value in the activity (TRUE)?",
17656 "should presolving try to detect constraints parallel to the objective function defining an upper bound and prevent these constraints from entering the LP?",
17660 "should presolving try to detect constraints parallel to the objective function defining a lower bound and prevent these constraints from entering the LP?",
17668 "should presolving and propagation try to improve bounds, detect infeasibility, and extract sub-constraints from ranged rows and equations?",
17681 &conshdlrdata->rangedrowfreq, TRUE, DEFAULT_RANGEDROWFREQ, 1, SCIP_MAXTREEDEPTH, NULL, NULL) );
17689 &conshdlrdata->maxmultaggrquot, TRUE, DEFAULT_MAXMULTAGGRQUOT, 1.0, SCIP_REAL_MAX, NULL, NULL) );
17693 &conshdlrdata->maxdualmultaggrquot, TRUE, DEFAULT_MAXDUALMULTAGGRQUOT, 1.0, SCIP_REAL_MAX, NULL, NULL) );
17741 (void) SCIPsnprintf(paramname, SCIP_MAXSTRLEN, "constraints/linear/upgrade/%s", conshdlrname);
17742 (void) SCIPsnprintf(paramdesc, SCIP_MAXSTRLEN, "enable linear upgrading for constraint handler <%s>", conshdlrname);
17753 * @note the constraint gets captured, hence at one point you have to release it using the method SCIPreleaseCons()
17782 SCIP_Bool removable, /**< should the relaxation be removed from the LP due to aging or cleanup?
17784 SCIP_Bool stickingatnode /**< should the constraint always be kept at the node where it was added, even
17819 /* for the solving process we need linear rows, containing only active variables; therefore when creating a linear
17835 SCIP_CALL( SCIPgetProbvarLinearSum(scip, consvars, consvals, &nconsvars, nconsvars, &constant, &requiredsize) );
17843 SCIP_CALL( SCIPgetProbvarLinearSum(scip, consvars, consvals, &nconsvars, requiredsize, &constant, &requiredsize) );
17852 SCIPerrorMessage("while creating constraint <%s> inactive variables lead to an infinite constant\n", name);
17888 /* if this is a checked or enforced constraints, then there must be no relaxation-only variables */
17898 SCIP_CALL( SCIPcreateCons(scip, cons, name, conshdlr, consdata, initial, separate, enforce, check, propagate,
17905 * in its most basic version, i. e., all constraint flags are set to their basic value as explained for the
17906 * method SCIPcreateConsLinear(); all flags can be set via SCIPsetConsFLAGNAME-methods in scip.h
17910 * @note the constraint gets captured, hence at one point you have to release it using the method SCIPreleaseCons()
17939 SCIP_Real* sourcecoefs, /**< coefficient array of the linear constraint, or NULL if all coefficients are one */
17942 SCIP_HASHMAP* varmap, /**< a SCIP_HASHMAP mapping variables of the source SCIP to corresponding
17944 SCIP_HASHMAP* consmap, /**< a hashmap to store the mapping of source constraints to the corresponding
17954 SCIP_Bool removable, /**< should the relaxation be removed from the LP due to aging or cleanup? */
17955 SCIP_Bool stickingatnode, /**< should the constraint always be kept at the node where it was added, even
17980 initial, separate, enforce, check, propagate, local, modifiable, dynamic, removable, stickingatnode) );
18001 /* transform source variable to active variables of the source SCIP since only these can be mapped to variables of
18006 SCIP_CALL( SCIPgetProbvarLinearSum(sourcescip, vars, coefs, &nvars, nvars, &constant, &requiredsize) );
18013 SCIP_CALL( SCIPgetProbvarLinearSum(sourcescip, vars, coefs, &nvars, requiredsize, &constant, &requiredsize) );
18034 /* if this is a checked or enforced constraints, then there must be no relaxation-only variables */
18037 SCIP_CALL( SCIPgetVarCopy(sourcescip, scip, var, &vars[v], varmap, consmap, global, &success) );
18051 initial, separate, enforce, check, propagate, local, modifiable, dynamic, removable, stickingatnode) );
18091 /* for the solving process we need linear rows, containing only active variables; therefore when creating a linear
18113 SCIP_CALL( SCIPgetProbvarLinearSum(scip, consvars, consvals, &nconsvars, nconsvars, &constant, &requiredsize) );
18121 SCIP_CALL( SCIPgetProbvarLinearSum(scip, consvars, consvals, &nconsvars, requiredsize, &constant, &requiredsize) );
18142 SCIPerrorMessage("adding variable <%s> leads to inconsistent constraint <%s>, active variables leads to a infinite constant constradict the infinite left hand side of the constraint\n", SCIPvarGetName(var), SCIPconsGetName(cons));
18152 SCIPerrorMessage("adding variable <%s> leads to inconsistent constraint <%s>, active variables leads to a infinite constant constradict the infinite right hand side of the constraint\n", SCIPvarGetName(var), SCIPconsGetName(cons));
18168 SCIPerrorMessage("adding variable <%s> leads to inconsistent constraint <%s>, active variables leads to a infinite constant constradict the infinite left hand side of the constraint\n", SCIPvarGetName(var), SCIPconsGetName(cons));
18178 SCIPerrorMessage("adding variable <%s> leads to inconsistent constraint <%s>, active variables leads to a infinite constant constradict the infinite right hand side of the constraint\n", SCIPvarGetName(var), SCIPconsGetName(cons));
18231/** changes coefficient of variable in linear constraint; deletes the variable if coefficient is zero; adds variable if
18234 * @note This method may only be called during problem creation stage for an original constraint and variable.
18236 * @note This method requires linear time to search for occurences of the variable in the constraint data.
18260 if( SCIPgetStage(scip) > SCIP_STAGE_PROBLEM || !SCIPconsIsOriginal(cons) || !SCIPvarIsOriginal(var) )
18262 SCIPerrorMessage("method may only be called during problem creation stage for original constraints and variables\n");
18280 /* decrease i by one since otherwise we would skip the coefficient which has been switched to position i */
18302 * @note This method may only be called during problem creation stage for an original constraint and variable.
18304 * @note This method requires linear time to search for occurences of the variable in the constraint data.
18432/** gets the array of variables in the linear constraint; the user must not modify this array! */
18456/** gets the array of coefficient values in the linear constraint; the user must not modify this array! */
18482 * @note if the solution contains values at infinity, this method will return SCIP_INVALID in case the activity
18596/** returns the linear relaxation of the given linear constraint; may return NULL if no LP row was yet created;
18643 SCIP_CALL( SCIPcreateEmptyRowCons(scip, &consdata->row, cons, SCIPconsGetName(cons), consdata->lhs, consdata->rhs,
18646 SCIP_CALL( SCIPaddVarsToRow(scip, consdata->row, consdata->nvars, consdata->vars, consdata->vals) ) ;
18651/** tries to automatically convert a linear constraint into a more specific and more specialized constraint */
18694 /* we cannot upgrade a modifiable linear constraint, since we don't know what additional coefficients to expect */
18716 /* check, if the constraint was already upgraded and will be deleted anyway after preprocessing */
18725 SCIPerrorMessage("cannot upgrade linear constraint that is already stored as row in the LP\n");
18736 /* normalizeCons() can only detect infeasibility when scaling with the gcd. in that case, the scaling was
18741 * TODO: this needs to be fixed on master by changing the API and passing a pointer to whether the constraint is
18864 SCIPdebugMsg(scip, " +bin=%d -bin=%d +int=%d -int=%d +impl=%d -impl=%d +cont=%d -cont=%d +1=%d -1=%d +I=%d -I=%d +F=%d -F=%d possum=%.15g negsum=%.15g integral=%u\n",
18876 nposbin, nnegbin, nposint, nnegint, nposimpl, nnegimpl, nposimplbin, nnegimplbin, nposcont, nnegcont,
18887 SCIPdebugMsg(scip, " -> upgraded to constraint type <%s>\n", SCIPconshdlrGetName(SCIPconsGetHdlr(*upgdcons)));
18899 SCIP_Bool* infeasible, /**< pointer to return whether the problem was detected to be infeasible */
18915 nconss = onlychecked ? SCIPconshdlrGetNCheckConss(conshdlr) : SCIPconshdlrGetNActiveConss(conshdlr);
Constraint handler for knapsack constraints of the form , x binary and .
static SCIP_DECL_CONSENFORELAX(consEnforelaxLinear)
Definition: cons_linear.c:16008
static SCIP_RETCODE addCoef(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *var, SCIP_Real val)
Definition: cons_linear.c:3662
static SCIP_RETCODE consdataPrint(SCIP *scip, SCIP_CONSDATA *consdata, FILE *file)
Definition: cons_linear.c:1097
static void permSortConsdata(SCIP_CONSDATA *consdata, int *perm, int nvars)
Definition: cons_linear.c:3261
static void consdataRecomputeMaxActivityDelta(SCIP *scip, SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1542
static SCIP_RETCODE checkCons(SCIP *scip, SCIP_CONS *cons, SCIP_SOL *sol, SCIP_Bool checklprows, SCIP_Bool checkrelmaxabs, SCIP_Bool *violated)
Definition: cons_linear.c:7155
static SCIP_RETCODE addRelaxation(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *cutoff)
Definition: cons_linear.c:7439
static void consdataGetReliableResidualActivity(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *cancelvar, SCIP_Real *resactivity, SCIP_Bool isminresact, SCIP_Bool useglobalbounds)
Definition: cons_linear.c:2580
static SCIP_RETCODE convertEquality(SCIP *scip, SCIP_CONS *cons, SCIP_CONSHDLRDATA *conshdlrdata, SCIP_Bool *cutoff, int *nfixedvars, int *naggrvars, int *ndelconss, int *nchgvartypes)
Definition: cons_linear.c:10425
static SCIP_Bool checkEqualObjective(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_Real *scale, SCIP_Real *offset)
Definition: cons_linear.c:10103
static SCIP_RETCODE conshdlrdataIncludeUpgrade(SCIP *scip, SCIP_CONSHDLRDATA *conshdlrdata, SCIP_LINCONSUPGRADE *linconsupgrade)
Definition: cons_linear.c:618
static SCIP_RETCODE extractCliques(SCIP *scip, SCIP_CONS *cons, SCIP_Real maxeasyactivitydelta, SCIP_Bool sortvars, int *nfixedvars, int *nchgbds, SCIP_Bool *cutoff)
Definition: cons_linear.c:7911
static SCIP_DECL_HASHKEYVAL(hashKeyValLinearcons)
Definition: cons_linear.c:12972
static SCIP_DECL_NONLINCONSUPGD(upgradeConsNonlinear)
Definition: cons_linear.c:17447
static SCIP_RETCODE convertBinaryEquality(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *cutoff, int *naggrvars, int *ndelconss)
Definition: cons_linear.c:9470
static void consdataRecomputeMinactivity(SCIP *scip, SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1307
static SCIP_DECL_HASHGETKEY(hashGetKeyLinearcons)
Definition: cons_linear.c:12888
static SCIP_RETCODE addConflictFixedVars(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *infervar, SCIP_BDCHGIDX *bdchgidx, int inferpos)
Definition: cons_linear.c:4980
static SCIP_DECL_CONSHDLRCOPY(conshdlrCopyLinear)
Definition: cons_linear.c:15101
static SCIP_RETCODE tightenVarLb(SCIP *scip, SCIP_CONS *cons, int pos, PROPRULE proprule, SCIP_Real newlb, SCIP_Real oldlb, SCIP_Bool *cutoff, int *nchgbds, SCIP_Bool force)
Definition: cons_linear.c:5310
static SCIP_RETCODE fullDualPresolve(SCIP *scip, SCIP_CONS **conss, int nconss, SCIP_Bool *cutoff, int *nchgbds, int *nchgvartypes)
Definition: cons_linear.c:14481
static SCIP_RETCODE convertLongEquality(SCIP *scip, SCIP_CONSHDLRDATA *conshdlrdata, SCIP_CONS *cons, SCIP_Bool *cutoff, int *naggrvars, int *ndelconss, int *nchgvartypes)
Definition: cons_linear.c:9582
static SCIP_Real consdataComputePseudoActivity(SCIP *scip, SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1254
static SCIP_RETCODE conshdlrdataEnsureLinconsupgradesSize(SCIP *scip, SCIP_CONSHDLRDATA *conshdlrdata, int num)
Definition: cons_linear.c:447
static SCIP_RETCODE retrieveParallelConstraints(SCIP_HASHTABLE *hashtable, SCIP_CONS **querycons, SCIP_CONS **parallelconss, int *nparallelconss)
Definition: cons_linear.c:13023
static void conshdlrdataFree(SCIP *scip, SCIP_CONSHDLRDATA **conshdlrdata)
Definition: cons_linear.c:566
static void calculateMinvalAndMaxval(SCIP *scip, SCIP_Real side, SCIP_Real val, SCIP_Real minresactivity, SCIP_Real maxresactivity, SCIP_Real *minval, SCIP_Real *maxval)
Definition: cons_linear.c:10507
static SCIP_RETCODE lockRounding(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *var, SCIP_Real val)
Definition: cons_linear.c:650
static void consdataRecomputeGlbMinactivity(SCIP *scip, SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1361
static void consdataUpdateActivitiesUb(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *var, SCIP_Real oldub, SCIP_Real newub, SCIP_Real val, SCIP_Bool checkreliability)
Definition: cons_linear.c:2021
static SCIP_RETCODE tightenSides(SCIP *scip, SCIP_CONS *cons, int *nchgsides, SCIP_Bool *infeasible)
Definition: cons_linear.c:8884
static void consdataUpdateActivitiesGlbLb(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_Real oldlb, SCIP_Real newlb, SCIP_Real val, SCIP_Bool checkreliability)
Definition: cons_linear.c:2046
static void consdataUpdateActivitiesLb(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *var, SCIP_Real oldlb, SCIP_Real newlb, SCIP_Real val, SCIP_Bool checkreliability)
Definition: cons_linear.c:1996
static SCIP_Bool conshdlrdataHasUpgrade(SCIP *scip, SCIP_CONSHDLRDATA *conshdlrdata, SCIP_DECL_LINCONSUPGD((*linconsupgd)), const char *conshdlrname)
Definition: cons_linear.c:588
static SCIP_RETCODE chgCoefPos(SCIP *scip, SCIP_CONS *cons, int pos, SCIP_Real newval)
Definition: cons_linear.c:3908
static void consdataRecomputeMaxactivity(SCIP *scip, SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1334
static SCIP_RETCODE linconsupgradeCreate(SCIP *scip, SCIP_LINCONSUPGRADE **linconsupgrade, SCIP_DECL_LINCONSUPGD((*linconsupgd)), int priority)
Definition: cons_linear.c:507
static SCIP_RETCODE performVarDeletions(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_CONS **conss, int nconss)
Definition: cons_linear.c:4091
static SCIP_Bool isFiniteNonnegativeIntegral(SCIP *scip, SCIP_Real x)
Definition: cons_linear.c:15213
static void consdataUpdateSignatures(SCIP_CONSDATA *consdata, int pos)
Definition: cons_linear.c:3107
static SCIP_RETCODE scaleCons(SCIP *scip, SCIP_CONS *cons, SCIP_Real scalar)
Definition: cons_linear.c:3998
static SCIP_RETCODE detectRedundantConstraints(SCIP *scip, BMS_BLKMEM *blkmem, SCIP_CONS **conss, int nconss, int *firstchange, SCIP_Bool *cutoff, int *ndelconss, int *nchgsides)
Definition: cons_linear.c:13084
static void linconsupgradeFree(SCIP *scip, SCIP_LINCONSUPGRADE **linconsupgrade)
Definition: cons_linear.c:528
static SCIP_RETCODE aggregateConstraints(SCIP *scip, SCIP_CONS *cons0, SCIP_CONS *cons1, int *commonidx0, int *commonidx1, int *diffidx0minus1, int *diffidx1minus0, int nvarscommon, int commonidxweight, int diffidx0minus1weight, int diffidx1minus0weight, SCIP_Real maxaggrnormscale, int *nchgcoefs, SCIP_Bool *aggregated, SCIP_Bool *infeasible)
Definition: cons_linear.c:12572
static SCIP_RETCODE analyzeConflict(SCIP *scip, SCIP_CONS *cons, SCIP_Bool reasonisrhs)
Definition: cons_linear.c:5189
static SCIP_RETCODE rangedRowPropagation(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *cutoff, int *nfixedvars, int *nchgbds, int *naddconss)
Definition: cons_linear.c:5714
static SCIP_RETCODE mergeMultiples(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:4470
static SCIP_RETCODE separateCons(SCIP *scip, SCIP_CONS *cons, SCIP_CONSHDLRDATA *conshdlrdata, SCIP_SOL *sol, SCIP_Bool separatecards, SCIP_Bool separateall, int *ncuts, SCIP_Bool *cutoff)
Definition: cons_linear.c:7538
static SCIP_RETCODE addSymmetryInformation(SCIP *scip, SYM_SYMTYPE symtype, SCIP_CONS *cons, SYM_GRAPH *graph, SCIP_Bool *success)
Definition: cons_linear.c:15028
static void consdataGetActivityBounds(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_Bool goodrelax, SCIP_Real *minactivity, SCIP_Real *maxactivity, SCIP_Bool *ismintight, SCIP_Bool *ismaxtight, SCIP_Bool *isminsettoinfinity, SCIP_Bool *ismaxsettoinfinity)
Definition: cons_linear.c:2533
static void consdataCheckNonbinvar(SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1468
static SCIP_RETCODE chgLhs(SCIP *scip, SCIP_CONS *cons, SCIP_Real lhs)
Definition: cons_linear.c:3404
static void consdataUpdateActivitiesGlbUb(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_Real oldub, SCIP_Real newub, SCIP_Real val, SCIP_Bool checkreliability)
Definition: cons_linear.c:2069
static SCIP_RETCODE consCatchEvent(SCIP *scip, SCIP_CONS *cons, SCIP_EVENTHDLR *eventhdlr, int pos)
Definition: cons_linear.c:717
static void consdataCalcMinAbsval(SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1439
static SCIP_RETCODE addConflictBounds(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *infervar, SCIP_BDCHGIDX *bdchgidx, int inferpos, SCIP_Bool reasonisrhs)
Definition: cons_linear.c:4798
static SCIP_RETCODE consdataEnsureVarsSize(SCIP *scip, SCIP_CONSDATA *consdata, int num)
Definition: cons_linear.c:472
static SCIP_RETCODE tightenBounds(SCIP *scip, SCIP_CONS *cons, SCIP_Real maxeasyactivitydelta, SCIP_Bool sortvars, SCIP_Bool *cutoff, int *nchgbds)
Definition: cons_linear.c:6977
static void consdataCalcMaxAbsval(SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1415
static SCIP_DECL_CONSGETPERMSYMGRAPH(consGetPermsymGraphLinear)
Definition: cons_linear.c:17133
static SCIP_RETCODE consDropAllEvents(SCIP *scip, SCIP_CONS *cons, SCIP_EVENTHDLR *eventhdlr)
Definition: cons_linear.c:824
static SCIP_DECL_CONSDEACTIVE(consDeactiveLinear)
Definition: cons_linear.c:15732
static SCIP_Real consdataGetActivity(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_SOL *sol)
Definition: cons_linear.c:3020
static SCIP_RETCODE consdataTightenCoefs(SCIP *scip, SCIP_CONS *cons, int *nchgcoefs, int *nchgsides)
Definition: cons_linear.c:9003
static SCIP_RETCODE normalizeCons(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *infeasible)
Definition: cons_linear.c:4150
static SCIP_DECL_CONSGETSIGNEDPERMSYMGRAPH(consGetSignedPermsymGraphLinear)
Definition: cons_linear.c:17142
static SCIP_RETCODE presolStuffing(SCIP *scip, SCIP_CONS *cons, SCIP_Bool singletonstuffing, SCIP_Bool singlevarstuffing, SCIP_Bool *cutoff, int *nfixedvars, int *nchgbds)
Definition: cons_linear.c:13892
static SCIP_RETCODE unlockRounding(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *var, SCIP_Real val)
Definition: cons_linear.c:683
static void consdataCalcSignatures(SCIP_CONSDATA *consdata)
Definition: cons_linear.c:3132
static SCIP_RETCODE addConflictReasonVars(SCIP *scip, SCIP_VAR **vars, int nvars, SCIP_VAR *var, SCIP_Real bound)
Definition: cons_linear.c:5045
static SCIP_RETCODE propagateCons(SCIP *scip, SCIP_CONS *cons, SCIP_Bool tightenbounds, SCIP_Bool rangedrowpropagation, SCIP_Real maxeasyactivitydelta, SCIP_Bool sortvars, SCIP_Bool *cutoff, int *nchgbds)
Definition: cons_linear.c:7628
static SCIP_RETCODE updateCutoffbound(SCIP *scip, SCIP_CONS *cons, SCIP_Real primalbound)
Definition: cons_linear.c:10252
static void consdataUpdateDelCoef(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *var, SCIP_Real val, SCIP_Bool checkreliability)
Definition: cons_linear.c:2168
static SCIP_RETCODE delCoefPos(SCIP *scip, SCIP_CONS *cons, int pos)
Definition: cons_linear.c:3795
static void consdataUpdateAddCoef(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *var, SCIP_Real val, SCIP_Bool checkreliability)
Definition: cons_linear.c:2092
static void getMinActivity(SCIP *scip, SCIP_CONSDATA *consdata, int posinf, int neginf, int poshuge, int neghuge, SCIP_Real delta, SCIP_Bool global, SCIP_Bool goodrelax, SCIP_Real *minactivity, SCIP_Bool *istight, SCIP_Bool *issettoinfinity)
Definition: cons_linear.c:2345
static SCIP_RETCODE consdataCreate(SCIP *scip, SCIP_CONSDATA **consdata, int nvars, SCIP_VAR **vars, SCIP_Real *vals, SCIP_Real lhs, SCIP_Real rhs)
Definition: cons_linear.c:855
static SCIP_RETCODE chgRhs(SCIP *scip, SCIP_CONS *cons, SCIP_Real rhs)
Definition: cons_linear.c:3532
static SCIP_RETCODE tightenVarBoundsEasy(SCIP *scip, SCIP_CONS *cons, int pos, SCIP_Bool *cutoff, int *nchgbds, SCIP_Bool force)
Definition: cons_linear.c:5379
static void consdataUpdateActivities(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *var, SCIP_Real oldbound, SCIP_Real newbound, SCIP_Real val, SCIP_BOUNDTYPE boundtype, SCIP_Bool global, SCIP_Bool checkreliability)
Definition: cons_linear.c:1604
static unsigned int getParallelConsKey(SCIP_CONS *cons)
Definition: cons_linear.c:13004
static SCIP_RETCODE fixVariables(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *cutoff, int *nfixedvars)
Definition: cons_linear.c:7776
static SCIP_RETCODE enforceConstraint(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_CONS **conss, int nconss, int nusefulconss, SCIP_SOL *sol, SCIP_RESULT *result)
Definition: cons_linear.c:14956
static SCIP_RETCODE consdataFree(SCIP *scip, SCIP_CONSDATA **consdata)
Definition: cons_linear.c:1056
static SCIP_DECL_CONSGETNVARS(consGetNVarsLinear)
Definition: cons_linear.c:17117
static void consdataGetActivityResiduals(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *var, SCIP_Real val, SCIP_Bool goodrelax, SCIP_Real *minresactivity, SCIP_Real *maxresactivity, SCIP_Bool *ismintight, SCIP_Bool *ismaxtight, SCIP_Bool *isminsettoinfinity, SCIP_Bool *ismaxsettoinfinity)
Definition: cons_linear.c:2661
static SCIP_Real consdataGetMaxAbsval(SCIP_CONSDATA *consdata)
Definition: cons_linear.c:2249
static SCIP_RETCODE consPrintConsSol(SCIP *scip, SCIP_CONS *cons, SCIP_SOL *sol, FILE *file)
Definition: cons_linear.c:1136
static void getMaxActivity(SCIP *scip, SCIP_CONSDATA *consdata, int posinf, int neginf, int poshuge, int neghuge, SCIP_Real delta, SCIP_Bool global, SCIP_Bool goodrelax, SCIP_Real *maxactivity, SCIP_Bool *istight, SCIP_Bool *issettoinfinity)
Definition: cons_linear.c:2440
static void getNewSidesAfterAggregation(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *slackvar, SCIP_Real slackcoef, SCIP_Real *newlhs, SCIP_Real *newrhs)
Definition: cons_linear.c:9528
static SCIP_RETCODE convertUnaryEquality(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *cutoff, int *nfixedvars, int *ndelconss)
Definition: cons_linear.c:9414
static void consdataUpdateChgCoef(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *var, SCIP_Real oldval, SCIP_Real newval, SCIP_Bool checkreliability)
Definition: cons_linear.c:2233
static SCIP_RETCODE conshdlrdataCreate(SCIP *scip, SCIP_CONSHDLRDATA **conshdlrdata, SCIP_EVENTHDLR *eventhdlr)
Definition: cons_linear.c:542
static void consdataRecomputeGlbMaxactivity(SCIP *scip, SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1388
static SCIP_RETCODE applyFixings(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *infeasible)
Definition: cons_linear.c:4533
static void consdataCalcActivities(SCIP *scip, SCIP_CONSDATA *consdata)
Definition: cons_linear.c:2283
static void consdataGetGlbActivityResiduals(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *var, SCIP_Real val, SCIP_Bool goodrelax, SCIP_Real *minresactivity, SCIP_Real *maxresactivity, SCIP_Bool *ismintight, SCIP_Bool *ismaxtight, SCIP_Bool *isminsettoinfinity, SCIP_Bool *ismaxsettoinfinity)
Definition: cons_linear.c:2870
static SCIP_RETCODE tightenVarUb(SCIP *scip, SCIP_CONS *cons, int pos, PROPRULE proprule, SCIP_Real newub, SCIP_Real oldub, SCIP_Bool *cutoff, int *nchgbds, SCIP_Bool force)
Definition: cons_linear.c:5241
static int inferInfoGetProprule(INFERINFO inferinfo)
Definition: cons_linear.c:395
static SCIP_DECL_CONFLICTEXEC(conflictExecLinear)
Definition: cons_linear.c:17361
static SCIP_RETCODE dualPresolve(SCIP *scip, SCIP_CONSHDLRDATA *conshdlrdata, SCIP_CONS *cons, SCIP_Bool *cutoff, int *nfixedvars, int *naggrvars, int *ndelconss, int *nchgvartypes)
Definition: cons_linear.c:10552
static SCIP_Real consdataGetFeasibility(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_SOL *sol)
Definition: cons_linear.c:3086
static SCIP_RETCODE rangedRowSimplify(SCIP *scip, SCIP_CONS *cons, int *nchgcoefs, int *nchgsides)
Definition: cons_linear.c:11227
static SCIP_RETCODE aggregateVariables(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *cutoff, int *nfixedvars, int *naggrvars)
Definition: cons_linear.c:11019
static void consdataInvalidateActivities(SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1208
static SCIP_RETCODE analyzeConflictRangedRow(SCIP *scip, SCIP_CONS *cons, SCIP_VAR **vars, int nvars, SCIP_VAR *var, SCIP_Real bound)
Definition: cons_linear.c:5656
static SCIP_RETCODE consDropEvent(SCIP *scip, SCIP_CONS *cons, SCIP_EVENTHDLR *eventhdlr, int pos)
Definition: cons_linear.c:757
static SCIP_RETCODE tightenVarBounds(SCIP *scip, SCIP_CONS *cons, int pos, SCIP_Bool *cutoff, int *nchgbds, SCIP_Bool force)
Definition: cons_linear.c:6697
static SCIP_Real consdataGetMinAbsval(SCIP_CONSDATA *consdata)
Definition: cons_linear.c:2265
static SCIP_Bool consdataIsResidualIntegral(SCIP *scip, SCIP_CONSDATA *consdata, int pos, SCIP_Real val)
Definition: cons_linear.c:10481
static SCIP_RETCODE preprocessConstraintPairs(SCIP *scip, SCIP_CONS **conss, int firstchange, int chkind, SCIP_Real maxaggrnormscale, SCIP_Bool *cutoff, int *ndelconss, int *nchgsides, int *nchgcoefs)
Definition: cons_linear.c:13288
static SCIP_RETCODE consdataSort(SCIP *scip, SCIP_CONSDATA *consdata)
Definition: cons_linear.c:3337
static SCIP_RETCODE checkParallelObjective(SCIP *scip, SCIP_CONS *cons, SCIP_CONSHDLRDATA *conshdlrdata)
Definition: cons_linear.c:10298
static SCIP_RETCODE simplifyInequalities(SCIP *scip, SCIP_CONS *cons, int *nchgcoefs, int *nchgsides, SCIP_Bool *infeasible)
Definition: cons_linear.c:11339
static SCIP_RETCODE consCatchAllEvents(SCIP *scip, SCIP_CONS *cons, SCIP_EVENTHDLR *eventhdlr)
Definition: cons_linear.c:792
static SCIP_RETCODE resolvePropagation(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *infervar, INFERINFO inferinfo, SCIP_BOUNDTYPE boundtype, SCIP_BDCHGIDX *bdchgidx, SCIP_RESULT *result)
Definition: cons_linear.c:5096
static SCIP_Bool isRangedRow(SCIP *scip, SCIP_Real lhs, SCIP_Real rhs)
Definition: cons_linear.c:15200
static SCIP_RETCODE checkPartialObjective(SCIP *scip, SCIP_CONS *cons, SCIP_CONSHDLRDATA *conshdlrdata)
Definition: cons_linear.c:10181
static void consdataGetGlbActivityBounds(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_Bool goodrelax, SCIP_Real *glbminactivity, SCIP_Real *glbmaxactivity, SCIP_Bool *ismintight, SCIP_Bool *ismaxtight, SCIP_Bool *isminsettoinfinity, SCIP_Bool *ismaxsettoinfinity)
Definition: cons_linear.c:2810
static void findOperators(const char *str, char **firstoperator, char **secondoperator, SCIP_Bool *success)
Definition: cons_linear.c:16841
Constraint handler for linear constraints in their most general form, .
constraint handler for nonlinear constraints specified by algebraic expressions
defines macros for basic operations in double-double arithmetic giving roughly twice the precision of...
methods for debugging
SCIP_RETCODE SCIPcreateRowLinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:18623
SCIP_Real SCIPgetDualsolLinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:18541
SCIP_RETCODE SCIPincludeLinconsUpgrade(SCIP *scip, SCIP_DECL_LINCONSUPGD((*linconsupgd)), int priority, const char *conshdlrname)
Definition: cons_linear.c:17703
SCIP_Real SCIPgetRhsLinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:18346
SCIP_RETCODE SCIPupgradeConsLinear(SCIP *scip, SCIP_CONS *cons, SCIP_CONS **upgdcons)
Definition: cons_linear.c:18652
SCIP_VAR ** SCIPgetVarsLinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:18433
SCIP_RETCODE SCIPchgRhsLinear(SCIP *scip, SCIP_CONS *cons, SCIP_Real rhs)
Definition: cons_linear.c:18391
SCIP_RETCODE SCIPcleanupConssLinear(SCIP *scip, SCIP_Bool onlychecked, SCIP_Bool *infeasible, int *ndelconss)
Definition: cons_linear.c:18896
SCIP_RETCODE SCIPincludeConsUpgradeNonlinear(SCIP *scip, SCIP_DECL_NONLINCONSUPGD((*nlconsupgd)), int priority, SCIP_Bool active, const char *conshdlrname)
Definition: cons_nonlinear.c:12721
SCIP_RETCODE SCIPaddCoefLinear(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *var, SCIP_Real val)
Definition: cons_linear.c:18064
SCIP_Real SCIPgetLhsLinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:18322
int SCIPgetNVarsLinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:18409
SCIP_Real * SCIPgetValsLinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:18457
SCIP_ROW * SCIPgetRowLinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:18599
SCIP_RETCODE SCIPcreateConsBasicLinear(SCIP *scip, SCIP_CONS **cons, const char *name, int nvars, SCIP_VAR **vars, SCIP_Real *vals, SCIP_Real lhs, SCIP_Real rhs)
Definition: cons_linear.c:17912
SCIP_EXPR * SCIPgetExprNonlinear(SCIP_CONS *cons)
Definition: cons_nonlinear.c:13979
SCIP_RETCODE SCIPseparateRelaxedKnapsack(SCIP *scip, SCIP_CONS *cons, SCIP_SEPA *sepa, int nknapvars, SCIP_VAR **knapvars, SCIP_Real *knapvals, SCIP_Real valscale, SCIP_Real rhs, SCIP_SOL *sol, SCIP_Bool *cutoff, int *ncuts)
Definition: cons_knapsack.c:5781
SCIP_Real SCIPgetDualfarkasLinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:18569
SCIP_RETCODE SCIPcopyConsLinear(SCIP *scip, SCIP_CONS **cons, SCIP *sourcescip, const char *name, int nvars, SCIP_VAR **sourcevars, SCIP_Real *sourcecoefs, SCIP_Real lhs, SCIP_Real rhs, SCIP_HASHMAP *varmap, SCIP_HASHMAP *consmap, SCIP_Bool initial, SCIP_Bool separate, SCIP_Bool enforce, SCIP_Bool check, SCIP_Bool propagate, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool dynamic, SCIP_Bool removable, SCIP_Bool stickingatnode, SCIP_Bool global, SCIP_Bool *valid)
Definition: cons_linear.c:17932
SCIP_RETCODE SCIPcreateConsLinear(SCIP *scip, SCIP_CONS **cons, const char *name, int nvars, SCIP_VAR **vars, SCIP_Real *vals, SCIP_Real lhs, SCIP_Real rhs, SCIP_Bool initial, SCIP_Bool separate, SCIP_Bool enforce, SCIP_Bool check, SCIP_Bool propagate, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool dynamic, SCIP_Bool removable, SCIP_Bool stickingatnode)
Definition: cons_linear.c:17755
SCIP_Real SCIPgetActivityLinear(SCIP *scip, SCIP_CONS *cons, SCIP_SOL *sol)
Definition: cons_linear.c:18485
SCIP_Real SCIPgetFeasibilityLinear(SCIP *scip, SCIP_CONS *cons, SCIP_SOL *sol)
Definition: cons_linear.c:18513
SCIP_RETCODE SCIPclassifyConstraintTypesLinear(SCIP *scip, SCIP_LINCONSSTATS *linconsstats)
Definition: cons_linear.c:15231
SCIP_RETCODE SCIPchgLhsLinear(SCIP *scip, SCIP_CONS *cons, SCIP_Real lhs)
Definition: cons_linear.c:18370
SCIP_RETCODE SCIPchgCoefLinear(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *var, SCIP_Real val)
Definition: cons_linear.c:18238
SCIP_RETCODE SCIPdelCoefLinear(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *var)
Definition: cons_linear.c:18306
SCIP_RETCODE SCIPincludeConshdlrLinear(SCIP *scip)
Definition: cons_linear.c:17510
SCIP_RETCODE SCIPconvertCutsToConss(SCIP *scip, SCIP_HASHMAP *varmap, SCIP_HASHMAP *consmap, SCIP_Bool global, int *ncutsadded)
Definition: scip_copy.c:2051
SCIP_Bool SCIPisConsCompressionEnabled(SCIP *scip)
Definition: scip_copy.c:662
SCIP_RETCODE SCIPgetVarCopy(SCIP *sourcescip, SCIP *targetscip, SCIP_VAR *sourcevar, SCIP_VAR **targetvar, SCIP_HASHMAP *varmap, SCIP_HASHMAP *consmap, SCIP_Bool global, SCIP_Bool *success)
Definition: scip_copy.c:713
SCIP_RETCODE SCIPaddConsUpgrade(SCIP *scip, SCIP_CONS *oldcons, SCIP_CONS **newcons)
Definition: scip_prob.c:3368
SCIP_RETCODE SCIPaddObjoffset(SCIP *scip, SCIP_Real addval)
Definition: scip_prob.c:1443
SCIP_RETCODE SCIPhashtableSafeInsert(SCIP_HASHTABLE *hashtable, void *element)
Definition: misc.c:2567
SCIP_RETCODE SCIPhashtableCreate(SCIP_HASHTABLE **hashtable, BMS_BLKMEM *blkmem, int tablesize, SCIP_DECL_HASHGETKEY((*hashgetkey)), SCIP_DECL_HASHKEYEQ((*hashkeyeq)), SCIP_DECL_HASHKEYVAL((*hashkeyval)), void *userptr)
Definition: misc.c:2298
void * SCIPhashtableRetrieve(SCIP_HASHTABLE *hashtable, void *key)
Definition: misc.c:2596
void SCIPhashtablePrintStatistics(SCIP_HASHTABLE *hashtable, SCIP_MESSAGEHDLR *messagehdlr)
Definition: misc.c:2792
SCIP_RETCODE SCIPhashtableRemove(SCIP_HASHTABLE *hashtable, void *element)
Definition: misc.c:2665
SCIP_RETCODE SCIPhashtableInsert(SCIP_HASHTABLE *hashtable, void *element)
Definition: misc.c:2535
SCIP_RETCODE SCIPupdateLocalLowerbound(SCIP *scip, SCIP_Real newbound)
Definition: scip_prob.c:4289
SCIP_RETCODE SCIPdelConsLocal(SCIP *scip, SCIP_CONS *cons)
Definition: scip_prob.c:4067
SCIP_RETCODE SCIPaddConflict(SCIP *scip, SCIP_NODE *node, SCIP_CONS **cons, SCIP_NODE *validnode, SCIP_CONFTYPE conftype, SCIP_Bool iscutoffinvolved)
Definition: scip_prob.c:3806
SCIP_RETCODE SCIPaddConsLocal(SCIP *scip, SCIP_CONS *cons, SCIP_NODE *validnode)
Definition: scip_prob.c:3986
void SCIPinfoMessage(SCIP *scip, FILE *file, const char *formatstr,...)
Definition: scip_message.c:208
void SCIPverbMessage(SCIP *scip, SCIP_VERBLEVEL msgverblevel, FILE *file, const char *formatstr,...)
Definition: scip_message.c:225
void SCIPwarningMessage(SCIP *scip, const char *formatstr,...)
Definition: scip_message.c:120
SCIP_Longint SCIPcalcGreComDiv(SCIP_Longint val1, SCIP_Longint val2)
Definition: misc.c:9197
SCIP_Longint SCIPcalcSmaComMul(SCIP_Longint val1, SCIP_Longint val2)
Definition: misc.c:9449
SCIP_Real SCIPselectSimpleValue(SCIP_Real lb, SCIP_Real ub, SCIP_Longint maxdnom)
Definition: misc.c:10041
SCIP_Bool SCIPrealToRational(SCIP_Real val, SCIP_Real mindelta, SCIP_Real maxdelta, SCIP_Longint maxdnom, SCIP_Longint *numerator, SCIP_Longint *denominator)
Definition: misc.c:9470
SCIP_RETCODE SCIPaddIntParam(SCIP *scip, const char *name, const char *desc, int *valueptr, SCIP_Bool isadvanced, int defaultvalue, int minvalue, int maxvalue, SCIP_DECL_PARAMCHGD((*paramchgd)), SCIP_PARAMDATA *paramdata)
Definition: scip_param.c:83
SCIP_RETCODE SCIPaddRealParam(SCIP *scip, const char *name, const char *desc, SCIP_Real *valueptr, SCIP_Bool isadvanced, SCIP_Real defaultvalue, SCIP_Real minvalue, SCIP_Real maxvalue, SCIP_DECL_PARAMCHGD((*paramchgd)), SCIP_PARAMDATA *paramdata)
Definition: scip_param.c:139
SCIP_RETCODE SCIPaddBoolParam(SCIP *scip, const char *name, const char *desc, SCIP_Bool *valueptr, SCIP_Bool isadvanced, SCIP_Bool defaultvalue, SCIP_DECL_PARAMCHGD((*paramchgd)), SCIP_PARAMDATA *paramdata)
Definition: scip_param.c:57
SCIP_RETCODE SCIPgetIntParam(SCIP *scip, const char *name, int *value)
Definition: scip_param.c:269
SCIP_RETCODE SCIPaddConflictLb(SCIP *scip, SCIP_VAR *var, SCIP_BDCHGIDX *bdchgidx)
Definition: scip_conflict.c:365
SCIP_RETCODE SCIPinitConflictAnalysis(SCIP *scip, SCIP_CONFTYPE conftype, SCIP_Bool iscutoffinvolved)
Definition: scip_conflict.c:336
SCIP_RETCODE SCIPaddConflictUb(SCIP *scip, SCIP_VAR *var, SCIP_BDCHGIDX *bdchgidx)
Definition: scip_conflict.c:432
const char * SCIPconflicthdlrGetName(SCIP_CONFLICTHDLR *conflicthdlr)
Definition: conflict_graphanalysis.c:1494
SCIP_Bool SCIPisConflictAnalysisApplicable(SCIP *scip)
Definition: scip_conflict.c:314
SCIP_RETCODE SCIPanalyzeConflictCons(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *success)
Definition: scip_conflict.c:728
SCIP_RETCODE SCIPincludeConflicthdlrBasic(SCIP *scip, SCIP_CONFLICTHDLR **conflicthdlrptr, const char *name, const char *desc, int priority, SCIP_DECL_CONFLICTEXEC((*conflictexec)), SCIP_CONFLICTHDLRDATA *conflicthdlrdata)
Definition: scip_conflict.c:121
int SCIPconshdlrGetNCheckConss(SCIP_CONSHDLR *conshdlr)
Definition: cons.c:4798
SCIP_RETCODE SCIPsetConshdlrParse(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSPARSE((*consparse)))
Definition: scip_cons.c:808
void SCIPconshdlrSetData(SCIP_CONSHDLR *conshdlr, SCIP_CONSHDLRDATA *conshdlrdata)
Definition: cons.c:4346
SCIP_CONS ** SCIPconshdlrGetCheckConss(SCIP_CONSHDLR *conshdlr)
Definition: cons.c:4755
SCIP_RETCODE SCIPsetConshdlrPresol(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSPRESOL((*conspresol)), int maxprerounds, SCIP_PRESOLTIMING presoltiming)
Definition: scip_cons.c:540
SCIP_RETCODE SCIPsetConshdlrInit(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSINIT((*consinit)))
Definition: scip_cons.c:396
SCIP_RETCODE SCIPsetConshdlrGetVars(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSGETVARS((*consgetvars)))
Definition: scip_cons.c:831
SCIP_RETCODE SCIPsetConshdlrSepa(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSSEPALP((*conssepalp)), SCIP_DECL_CONSSEPASOL((*conssepasol)), int sepafreq, int sepapriority, SCIP_Bool delaysepa)
Definition: scip_cons.c:235
SCIP_RETCODE SCIPsetConshdlrProp(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSPROP((*consprop)), int propfreq, SCIP_Bool delayprop, SCIP_PROPTIMING proptiming)
Definition: scip_cons.c:281
SCIP_RETCODE SCIPincludeConshdlrBasic(SCIP *scip, SCIP_CONSHDLR **conshdlrptr, const char *name, const char *desc, int enfopriority, int chckpriority, int eagerfreq, SCIP_Bool needscons, SCIP_DECL_CONSENFOLP((*consenfolp)), SCIP_DECL_CONSENFOPS((*consenfops)), SCIP_DECL_CONSCHECK((*conscheck)), SCIP_DECL_CONSLOCK((*conslock)), SCIP_CONSHDLRDATA *conshdlrdata)
Definition: scip_cons.c:181
SCIP_RETCODE SCIPsetConshdlrDeactive(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSDEACTIVE((*consdeactive)))
Definition: scip_cons.c:693
SCIP_RETCODE SCIPsetConshdlrGetPermsymGraph(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSGETPERMSYMGRAPH((*consgetpermsymgraph)))
Definition: scip_cons.c:900
SCIP_RETCODE SCIPsetConshdlrDelete(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSDELETE((*consdelete)))
Definition: scip_cons.c:578
SCIP_RETCODE SCIPsetConshdlrFree(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSFREE((*consfree)))
Definition: scip_cons.c:372
SCIP_RETCODE SCIPsetConshdlrEnforelax(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSENFORELAX((*consenforelax)))
Definition: scip_cons.c:323
SCIP_RETCODE SCIPsetConshdlrExit(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSEXIT((*consexit)))
Definition: scip_cons.c:420
SCIP_RETCODE SCIPsetConshdlrExitpre(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSEXITPRE((*consexitpre)))
Definition: scip_cons.c:516
SCIP_RETCODE SCIPsetConshdlrCopy(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSHDLRCOPY((*conshdlrcopy)), SCIP_DECL_CONSCOPY((*conscopy)))
Definition: scip_cons.c:347
SCIP_CONSHDLR * SCIPfindConshdlr(SCIP *scip, const char *name)
Definition: scip_cons.c:940
SCIP_RETCODE SCIPsetConshdlrGetSignedPermsymGraph(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSGETSIGNEDPERMSYMGRAPH((*consgetsignedpermsymgraph)))
Definition: scip_cons.c:924
SCIP_RETCODE SCIPsetConshdlrExitsol(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSEXITSOL((*consexitsol)))
Definition: scip_cons.c:468
SCIP_RETCODE SCIPsetConshdlrDelvars(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSDELVARS((*consdelvars)))
Definition: scip_cons.c:762
SCIP_RETCODE SCIPsetConshdlrInitlp(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSINITLP((*consinitlp)))
Definition: scip_cons.c:624
SCIP_RETCODE SCIPsetConshdlrInitsol(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSINITSOL((*consinitsol)))
Definition: scip_cons.c:444
SCIP_CONSHDLRDATA * SCIPconshdlrGetData(SCIP_CONSHDLR *conshdlr)
Definition: cons.c:4336
SCIP_RETCODE SCIPsetConshdlrTrans(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSTRANS((*constrans)))
Definition: scip_cons.c:601
SCIP_RETCODE SCIPsetConshdlrResprop(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSRESPROP((*consresprop)))
Definition: scip_cons.c:647
int SCIPconshdlrGetNActiveConss(SCIP_CONSHDLR *conshdlr)
Definition: cons.c:4812
SCIP_RETCODE SCIPsetConshdlrGetNVars(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSGETNVARS((*consgetnvars)))
Definition: scip_cons.c:854
SCIP_CONS ** SCIPconshdlrGetConss(SCIP_CONSHDLR *conshdlr)
Definition: cons.c:4735
SCIP_RETCODE SCIPsetConshdlrActive(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSACTIVE((*consactive)))
Definition: scip_cons.c:670
SCIP_RETCODE SCIPsetConshdlrPrint(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSPRINT((*consprint)))
Definition: scip_cons.c:785
SCIP_RETCODE SCIPprintCons(SCIP *scip, SCIP_CONS *cons, FILE *file)
Definition: scip_cons.c:2536
SCIP_RETCODE SCIPsetConsSeparated(SCIP *scip, SCIP_CONS *cons, SCIP_Bool separate)
Definition: scip_cons.c:1296
SCIP_Bool SCIPconsIsMarkedPropagate(SCIP_CONS *cons)
Definition: cons.c:8598
SCIP_RETCODE SCIPsetConsInitial(SCIP *scip, SCIP_CONS *cons, SCIP_Bool initial)
Definition: scip_cons.c:1271
SCIP_RETCODE SCIPsetConsEnforced(SCIP *scip, SCIP_CONS *cons, SCIP_Bool enforce)
Definition: scip_cons.c:1321
SCIP_Bool SCIPconsIsLockedType(SCIP_CONS *cons, SCIP_LOCKTYPE locktype)
Definition: cons.c:8782
SCIP_RETCODE SCIPunmarkConsPropagate(SCIP *scip, SCIP_CONS *cons)
Definition: scip_cons.c:2042
SCIP_RETCODE SCIPcreateCons(SCIP *scip, SCIP_CONS **cons, const char *name, SCIP_CONSHDLR *conshdlr, SCIP_CONSDATA *consdata, SCIP_Bool initial, SCIP_Bool separate, SCIP_Bool enforce, SCIP_Bool check, SCIP_Bool propagate, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool dynamic, SCIP_Bool removable, SCIP_Bool stickingatnode)
Definition: scip_cons.c:997
SCIP_RETCODE SCIPresetConsAge(SCIP *scip, SCIP_CONS *cons)
Definition: scip_cons.c:1812
SCIP_RETCODE SCIPmarkConsPropagate(SCIP *scip, SCIP_CONS *cons)
Definition: scip_cons.c:2014
SCIP_RETCODE SCIPupdateConsFlags(SCIP *scip, SCIP_CONS *cons0, SCIP_CONS *cons1)
Definition: scip_cons.c:1524
SCIP_RETCODE SCIPreleaseCons(SCIP *scip, SCIP_CONS **cons)
Definition: scip_cons.c:1173
SCIP_RETCODE SCIPsetConsPropagated(SCIP *scip, SCIP_CONS *cons, SCIP_Bool propagate)
Definition: scip_cons.c:1371
SCIP_RETCODE SCIPsetConsChecked(SCIP *scip, SCIP_CONS *cons, SCIP_Bool check)
Definition: scip_cons.c:1346
SCIP_RETCODE SCIPaddRow(SCIP *scip, SCIP_ROW *row, SCIP_Bool forcecut, SCIP_Bool *infeasible)
Definition: scip_cut.c:225
SCIP_RETCODE SCIPincludeEventhdlrBasic(SCIP *scip, SCIP_EVENTHDLR **eventhdlrptr, const char *name, const char *desc, SCIP_DECL_EVENTEXEC((*eventexec)), SCIP_EVENTHDLRDATA *eventhdlrdata)
Definition: scip_event.c:111
const char * SCIPeventhdlrGetName(SCIP_EVENTHDLR *eventhdlr)
Definition: event.c:396
SCIP_RETCODE SCIPcatchVarEvent(SCIP *scip, SCIP_VAR *var, SCIP_EVENTTYPE eventtype, SCIP_EVENTHDLR *eventhdlr, SCIP_EVENTDATA *eventdata, int *filterpos)
Definition: scip_event.c:367
SCIP_RETCODE SCIPdropVarEvent(SCIP *scip, SCIP_VAR *var, SCIP_EVENTTYPE eventtype, SCIP_EVENTHDLR *eventhdlr, SCIP_EVENTDATA *eventdata, int filterpos)
Definition: scip_event.c:413
SCIP_IMPLINTTYPE SCIPeventGetOldImpltype(SCIP_EVENT *event)
Definition: event.c:1496
#define SCIPduplicateBufferArray(scip, ptr, source, num)
Definition: scip_mem.h:132
#define SCIPreallocBlockMemoryArray(scip, ptr, oldnum, newnum)
Definition: scip_mem.h:99
#define SCIPfreeBlockMemoryArrayNull(scip, ptr, num)
Definition: scip_mem.h:111
#define SCIPduplicateBlockMemoryArray(scip, ptr, source, num)
Definition: scip_mem.h:105
SCIP_RETCODE SCIPreleaseNlRow(SCIP *scip, SCIP_NLROW **nlrow)
Definition: scip_nlp.c:1058
SCIP_RETCODE SCIPcreateNlRow(SCIP *scip, SCIP_NLROW **nlrow, const char *name, SCIP_Real constant, int nlinvars, SCIP_VAR **linvars, SCIP_Real *lincoefs, SCIP_EXPR *expr, SCIP_Real lhs, SCIP_Real rhs, SCIP_EXPRCURV curvature)
Definition: scip_nlp.c:954
void SCIPlinConsStatsIncTypeCount(SCIP_LINCONSSTATS *linconsstats, SCIP_LINCONSTYPE linconstype, int increment)
Definition: cons.c:8283
void SCIPlinConsStatsReset(SCIP_LINCONSSTATS *linconsstats)
Definition: cons.c:8251
SCIP_RETCODE SCIPchgRowLhs(SCIP *scip, SCIP_ROW *row, SCIP_Real lhs)
Definition: scip_lp.c:1529
SCIP_RETCODE SCIPcreateEmptyRowCons(SCIP *scip, SCIP_ROW **row, SCIP_CONS *cons, const char *name, SCIP_Real lhs, SCIP_Real rhs, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool removable)
Definition: scip_lp.c:1398
SCIP_RETCODE SCIPaddVarToRow(SCIP *scip, SCIP_ROW *row, SCIP_VAR *var, SCIP_Real val)
Definition: scip_lp.c:1646
SCIP_RETCODE SCIPprintRow(SCIP *scip, SCIP_ROW *row, FILE *file)
Definition: scip_lp.c:2176
SCIP_Real SCIPgetRowSolFeasibility(SCIP *scip, SCIP_ROW *row, SCIP_SOL *sol)
Definition: scip_lp.c:2131
SCIP_RETCODE SCIPchgRowRhs(SCIP *scip, SCIP_ROW *row, SCIP_Real rhs)
Definition: scip_lp.c:1553
SCIP_RETCODE SCIPaddVarsToRow(SCIP *scip, SCIP_ROW *row, int nvars, SCIP_VAR **vars, SCIP_Real *vals)
Definition: scip_lp.c:1672
SCIP_Real SCIPgetRowSolActivity(SCIP *scip, SCIP_ROW *row, SCIP_SOL *sol)
Definition: scip_lp.c:2108
SCIP_Real SCIPgetSolVal(SCIP *scip, SCIP_SOL *sol, SCIP_VAR *var)
Definition: scip_sol.c:1765
void SCIPupdateSolLPConsViolation(SCIP *scip, SCIP_SOL *sol, SCIP_Real absviol, SCIP_Real relviol)
Definition: scip_sol.c:469
SCIP_RETCODE SCIPupdateCutoffbound(SCIP *scip, SCIP_Real cutoffbound)
Definition: scip_solvingstats.c:1845
SCIP_Longint SCIPgetNConflictConssApplied(SCIP *scip)
Definition: scip_solvingstats.c:1210
SCIP_Bool SCIPisUbBetter(SCIP *scip, SCIP_Real newub, SCIP_Real oldlb, SCIP_Real oldub)
Definition: scip_numerics.c:1134
SCIP_Bool SCIPisFeasGE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:823
SCIP_Bool SCIPisGE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:488
SCIP_Bool SCIPisSumRelLE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:1238
SCIP_Bool SCIPisSumRelEQ(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:1212
SCIP_Bool SCIPisFeasEQ(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:771
SCIP_Bool SCIPisLbBetter(SCIP *scip, SCIP_Real newlb, SCIP_Real oldlb, SCIP_Real oldub)
Definition: scip_numerics.c:1119
SCIP_Bool SCIPisLE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:462
SCIP_Bool SCIPisFeasLT(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:784
SCIP_Bool SCIPisFeasNegative(SCIP *scip, SCIP_Real val)
Definition: scip_numerics.c:860
SCIP_Bool SCIPisFeasLE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:797
SCIP_Bool SCIPisFeasIntegral(SCIP *scip, SCIP_Real val)
Definition: scip_numerics.c:872
SCIP_Bool SCIPisGT(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:475
SCIP_Bool SCIPisSumRelGE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:1264
SCIP_Bool SCIPisScalingIntegral(SCIP *scip, SCIP_Real val, SCIP_Real scalar)
Definition: scip_numerics.c:597
SCIP_Bool SCIPisFeasGT(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:810
SCIP_Bool SCIPisEQ(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:436
SCIP_Bool SCIPisUpdateUnreliable(SCIP *scip, SCIP_Real newvalue, SCIP_Real oldvalue)
Definition: scip_numerics.c:1319
SCIP_Bool SCIPisLT(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:449
SCIP_Bool SCIPisSumGT(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:709
SCIP_Bool SCIPisFeasPositive(SCIP *scip, SCIP_Real val)
Definition: scip_numerics.c:848
SCIP_Bool SCIPparseReal(SCIP *scip, const char *str, SCIP_Real *value, char **endptr)
Definition: scip_numerics.c:368
SCIP_RETCODE SCIPtightenVarLb(SCIP *scip, SCIP_VAR *var, SCIP_Real newbound, SCIP_Bool force, SCIP_Bool *infeasible, SCIP_Bool *tightened)
Definition: scip_var.c:6401
SCIP_RETCODE SCIPvarGetOrigvarSum(SCIP_VAR **var, SCIP_Real *scalar, SCIP_Real *constant)
Definition: var.c:18320
SCIP_RETCODE SCIPlockVarCons(SCIP *scip, SCIP_VAR *var, SCIP_CONS *cons, SCIP_Bool lockdown, SCIP_Bool lockup)
Definition: scip_var.c:5210
SCIP_Real SCIPvarGetMultaggrConstant(SCIP_VAR *var)
Definition: var.c:23843
SCIP_RETCODE SCIPaddClique(SCIP *scip, SCIP_VAR **vars, SCIP_Bool *values, int nvars, SCIP_Bool isequation, SCIP_Bool *infeasible, int *nbdchgs)
Definition: scip_var.c:8882
SCIP_RETCODE SCIPgetTransformedVars(SCIP *scip, int nvars, SCIP_VAR **vars, SCIP_VAR **transvars)
Definition: scip_var.c:2119
int SCIPvarGetNLocksUpType(SCIP_VAR *var, SCIP_LOCKTYPE locktype)
Definition: var.c:4386
SCIP_Bool SCIPdoNotMultaggrVar(SCIP *scip, SCIP_VAR *var)
Definition: scip_var.c:10942
SCIP_RETCODE SCIPaggregateVars(SCIP *scip, SCIP_VAR *varx, SCIP_VAR *vary, SCIP_Real scalarx, SCIP_Real scalary, SCIP_Real rhs, SCIP_Bool *infeasible, SCIP_Bool *redundant, SCIP_Bool *aggregated)
Definition: scip_var.c:10550
SCIP_RETCODE SCIPinferVarUbCons(SCIP *scip, SCIP_VAR *var, SCIP_Real newbound, SCIP_CONS *infercons, int inferinfo, SCIP_Bool force, SCIP_Bool *infeasible, SCIP_Bool *tightened)
Definition: scip_var.c:7069
SCIP_Bool SCIPvarIsNonimpliedIntegral(SCIP_VAR *var)
Definition: var.c:23506
SCIP_RETCODE SCIPchgVarImplType(SCIP *scip, SCIP_VAR *var, SCIP_IMPLINTTYPE impltype, SCIP_Bool *infeasible)
Definition: scip_var.c:10218
SCIP_RETCODE SCIPtightenVarUb(SCIP *scip, SCIP_VAR *var, SCIP_Real newbound, SCIP_Bool force, SCIP_Bool *infeasible, SCIP_Bool *tightened)
Definition: scip_var.c:6651
SCIP_RETCODE SCIPgetProbvarSum(SCIP *scip, SCIP_VAR **var, SCIP_Real *scalar, SCIP_Real *constant)
Definition: scip_var.c:2499
SCIP_RETCODE SCIPaddVarLocksType(SCIP *scip, SCIP_VAR *var, SCIP_LOCKTYPE locktype, int nlocksdown, int nlocksup)
Definition: scip_var.c:5118
SCIP_RETCODE SCIPunlockVarCons(SCIP *scip, SCIP_VAR *var, SCIP_CONS *cons, SCIP_Bool lockdown, SCIP_Bool lockup)
Definition: scip_var.c:5296
SCIP_RETCODE SCIPcreateVarImpl(SCIP *scip, SCIP_VAR **var, const char *name, SCIP_Real lb, SCIP_Real ub, SCIP_Real obj, SCIP_VARTYPE vartype, SCIP_IMPLINTTYPE impltype, SCIP_Bool initial, SCIP_Bool removable, SCIP_DECL_VARDELORIG((*vardelorig)), SCIP_DECL_VARTRANS((*vartrans)), SCIP_DECL_VARDELTRANS((*vardeltrans)), SCIP_DECL_VARCOPY((*varcopy)), SCIP_VARDATA *vardata)
Definition: scip_var.c:225
SCIP_Real SCIPgetVarUbAtIndex(SCIP *scip, SCIP_VAR *var, SCIP_BDCHGIDX *bdchgidx, SCIP_Bool after)
Definition: scip_var.c:2872
SCIP_RETCODE SCIPmultiaggregateVar(SCIP *scip, SCIP_VAR *var, int naggvars, SCIP_VAR **aggvars, SCIP_Real *scalars, SCIP_Real constant, SCIP_Bool *infeasible, SCIP_Bool *aggregated)
Definition: scip_var.c:10834
SCIP_Real SCIPadjustedVarUb(SCIP *scip, SCIP_VAR *var, SCIP_Real ub)
Definition: scip_var.c:5634
SCIP_RETCODE SCIPparseVarsLinearsum(SCIP *scip, const char *str, SCIP_VAR **vars, SCIP_Real *vals, int *nvars, int varssize, int *requiredsize, char **endptr, SCIP_Bool *success)
Definition: scip_var.c:899
SCIP_RETCODE SCIPgetProbvarLinearSum(SCIP *scip, SCIP_VAR **vars, SCIP_Real *scalars, int *nvars, int varssize, SCIP_Real *constant, int *requiredsize)
Definition: scip_var.c:2378
SCIP_Real SCIPadjustedVarLb(SCIP *scip, SCIP_VAR *var, SCIP_Real lb)
Definition: scip_var.c:5570
SCIP_RETCODE SCIPchgVarType(SCIP *scip, SCIP_VAR *var, SCIP_VARTYPE vartype, SCIP_Bool *infeasible)
Definition: scip_var.c:10113
SCIP_RETCODE SCIPflattenVarAggregationGraph(SCIP *scip, SCIP_VAR *var)
Definition: scip_var.c:2332
SCIP_RETCODE SCIPaddVarImplication(SCIP *scip, SCIP_VAR *var, SCIP_Bool varfixing, SCIP_VAR *implvar, SCIP_BOUNDTYPE impltype, SCIP_Real implbound, SCIP_Bool *infeasible, int *nbdchgs)
Definition: scip_var.c:8740
SCIP_RETCODE SCIPfixVar(SCIP *scip, SCIP_VAR *var, SCIP_Real fixedval, SCIP_Bool *infeasible, SCIP_Bool *fixed)
Definition: scip_var.c:10318
SCIP_RETCODE SCIPinferVarLbCons(SCIP *scip, SCIP_VAR *var, SCIP_Real newbound, SCIP_CONS *infercons, int inferinfo, SCIP_Bool force, SCIP_Bool *infeasible, SCIP_Bool *tightened)
Definition: scip_var.c:6964
SCIP_Real SCIPgetVarLbAtIndex(SCIP *scip, SCIP_VAR *var, SCIP_BDCHGIDX *bdchgidx, SCIP_Bool after)
Definition: scip_var.c:2736
SCIP_RETCODE SCIPwriteVarName(SCIP *scip, FILE *file, SCIP_VAR *var, SCIP_Bool type)
Definition: scip_var.c:361
SCIP_RETCODE SCIPchgVarObj(SCIP *scip, SCIP_VAR *var, SCIP_Real newobj)
Definition: scip_var.c:5372
SCIP_RETCODE SCIPwriteVarsLinearsum(SCIP *scip, FILE *file, SCIP_VAR **vars, SCIP_Real *vals, int nvars, SCIP_Bool type)
Definition: scip_var.c:474
SCIP_Real SCIPbdchginfoGetNewbound(SCIP_BDCHGINFO *bdchginfo)
Definition: var.c:24919
int SCIPvarGetNLocksDownType(SCIP_VAR *var, SCIP_LOCKTYPE locktype)
Definition: var.c:4328
SCIP_RETCODE SCIPgetTransformedVar(SCIP *scip, SCIP_VAR *var, SCIP_VAR **transvar)
Definition: scip_var.c:2078
SCIP_RETCODE SCIPinferVarFixCons(SCIP *scip, SCIP_VAR *var, SCIP_Real fixedval, SCIP_CONS *infercons, int inferinfo, SCIP_Bool force, SCIP_Bool *infeasible, SCIP_Bool *tightened)
Definition: scip_var.c:6895
SCIP_Real * SCIPvarGetMultaggrScalars(SCIP_VAR *var)
Definition: var.c:23818
void SCIPsortDownRealPtr(SCIP_Real *realarray, void **ptrarray, int len)
void SCIPsortRealInt(SCIP_Real *realarray, int *intarray, int len)
void SCIPsort(int *perm, SCIP_DECL_SORTINDCOMP((*indcomp)), void *dataptr, int len)
Definition: misc.c:5581
SCIP_RETCODE SCIPgetSymActiveVariables(SCIP *scip, SYM_SYMTYPE symtype, SCIP_VAR ***vars, SCIP_Real **scalars, int *nvars, SCIP_Real *constant, SCIP_Bool transformed)
Definition: symmetry_graph.c:1845
SCIP_RETCODE SCIPextendPermsymDetectionGraphLinear(SCIP *scip, SYM_GRAPH *graph, SCIP_VAR **vars, SCIP_Real *vals, int nvars, SCIP_CONS *cons, SCIP_Real lhs, SCIP_Real rhs, SCIP_Bool *success)
Definition: symmetry_graph.c:376
memory allocation routines
void SCIPmessageFPrintInfo(SCIP_MESSAGEHDLR *messagehdlr, FILE *file, const char *formatstr,...)
Definition: message.c:618
Definition: multiprecision.hpp:66
public methods for conflict analysis handlers
public methods for managing constraints
public methods for managing events
public functions to work with algebraic expressions
public methods for LP management
public methods for message output
public data structures and miscellaneous methods
methods for sorting joint arrays of various types
public methods for problem variables
public methods for branching rule plugins and branching
public methods for conflict handler plugins and conflict analysis
public methods for constraint handler plugins and constraints
public methods for problem copies
public methods for cuts and aggregation rows
public methods for event handler plugins and event handlers
general public methods
public methods for the LP relaxation, rows and columns
public methods for memory management
public methods for message handling
public methods for numerical tolerances
public methods for SCIP parameter handling
public methods for global and local (sub)problems
public methods for the probing mode
public methods for solutions
public methods for querying solving statistics
public methods for the branch-and-bound tree
public methods for SCIP variables
static SCIP_RETCODE separate(SCIP *scip, SCIP_SEPA *sepa, SCIP_SOL *sol, SCIP_RESULT *result)
Main separation function.
Definition: sepa_flower.c:1221
Definition: struct_var.h:114
Definition: struct_conflict.h:50
Definition: struct_cons.h:47
Definition: struct_cons.h:128
Definition: struct_event.h:218
Definition: struct_expr.h:106
Definition: struct_misc.h:139
Definition: struct_misc.h:90
Definition: struct_cons.h:294
Definition: cons_linear.c:333
SCIP_DECL_LINCONSUPGD((*linconsupgd))
Definition: struct_nlp.h:65
Definition: struct_lp.h:205
Definition: struct_sol.h:74
Definition: struct_var.h:262
Definition: struct_symmetry.h:46
Definition: struct_scip.h:72
structs for symmetry computations
methods for dealing with symmetry detection graphs