Scippy

SCIP

Solving Constraint Integer Programs

cons_components.c
Go to the documentation of this file.
1 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
2 /* */
3 /* This file is part of the program and library */
4 /* SCIP --- Solving Constraint Integer Programs */
5 /* */
6 /* Copyright (c) 2002-2024 Zuse Institute Berlin (ZIB) */
7 /* */
8 /* Licensed under the Apache License, Version 2.0 (the "License"); */
9 /* you may not use this file except in compliance with the License. */
10 /* You may obtain a copy of the License at */
11 /* */
12 /* http://www.apache.org/licenses/LICENSE-2.0 */
13 /* */
14 /* Unless required by applicable law or agreed to in writing, software */
15 /* distributed under the License is distributed on an "AS IS" BASIS, */
16 /* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. */
17 /* See the License for the specific language governing permissions and */
18 /* limitations under the License. */
19 /* */
20 /* You should have received a copy of the Apache-2.0 license */
21 /* along with SCIP; see the file LICENSE. If not visit scipopt.org. */
22 /* */
23 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
24 
25 /**@file cons_components.c
26  * @ingroup DEFPLUGINS_CONS
27  * @brief constraint handler for handling independent components
28  * @author Gerald Gamrath
29  *
30  * This constraint handler looks for independent components.
31  */
32 /*#define DETAILED_OUTPUT*/
33 /*#define SCIP_DEBUG*/
34 /*#define SCIP_MORE_DEBUG*/
35 /*---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9----+----0----+----1----+----2*/
36 
37 #include "blockmemshell/memory.h"
38 #include "scip/cons_components.h"
39 #include "scip/debug.h"
40 #include "scip/pub_cons.h"
41 #include "scip/pub_heur.h"
42 #include "scip/pub_message.h"
43 #include "scip/pub_misc.h"
44 #include "scip/pub_misc_sort.h"
45 #include "scip/pub_sol.h"
46 #include "scip/pub_tree.h"
47 #include "scip/pub_var.h"
48 #include "scip/scip_cons.h"
49 #include "scip/scip_copy.h"
51 #include "scip/scip_general.h"
52 #include "scip/scip_heur.h"
53 #include "scip/scip_mem.h"
54 #include "scip/scip_message.h"
55 #include "scip/scip_numerics.h"
56 #include "scip/scip_param.h"
57 #include "scip/scip_pricer.h"
58 #include "scip/scip_prob.h"
59 #include "scip/scip_probing.h"
60 #include "scip/scip_sol.h"
61 #include "scip/scip_solve.h"
62 #include "scip/scip_solvingstats.h"
63 #include "scip/scip_timing.h"
64 #include "scip/scip_tree.h"
65 #include "scip/scip_var.h"
66 #include <string.h>
67 
68 #define CONSHDLR_NAME "components"
69 #define CONSHDLR_DESC "independent components constraint handler"
70 #define CONSHDLR_ENFOPRIORITY 0 /**< priority of the constraint handler for constraint enforcing */
71 #define CONSHDLR_CHECKPRIORITY -9999999 /**< priority of the constraint handler for checking feasibility */
72 #define CONSHDLR_EAGERFREQ -1 /**< frequency for using all instead of only the useful constraints in separation,
73  * propagation and enforcement, -1 for no eager evaluations, 0 for first only */
74 #define CONSHDLR_NEEDSCONS FALSE /**< should the constraint handler be skipped, if no constraints are available? */
75 
76 #define CONSHDLR_PROPFREQ 1 /**< frequency for propagating domains; zero means only preprocessing propagation */
77 #define CONSHDLR_MAXPREROUNDS -1 /**< maximal number of presolving rounds the constraint handler participates in (-1: no limit) */
78 #define CONSHDLR_DELAYPROP TRUE /**< should propagation method be delayed, if other propagators found reductions? */
79 
80 #define CONSHDLR_PRESOLTIMING SCIP_PRESOLTIMING_FINAL /**< presolving timing of the constraint handler (fast, medium, or exhaustive) */
81 #define CONSHDLR_PROP_TIMING SCIP_PROPTIMING_BEFORELP /**< propagation timing mask of the constraint handler */
82 
83 #define DEFAULT_MAXDEPTH -1 /**< maximum depth of a node to run components detection (-1: disable component detection during solving) */
84 #define DEFAULT_MAXINTVARS 500 /**< maximum number of integer (or binary) variables to solve a subproblem directly in presolving (-1: no solving) */
85 #define DEFAULT_MINSIZE 50 /**< minimum absolute size (in terms of variables) to solve a component individually during branch-and-bound */
86 #define DEFAULT_MINRELSIZE 0.1 /**< minimum relative size (in terms of variables) to solve a component individually during branch-and-bound */
87 #define DEFAULT_NODELIMIT 10000LL /**< maximum number of nodes to be solved in subproblems during presolving */
88 #define DEFAULT_INTFACTOR 1.0 /**< the weight of an integer variable compared to binary variables */
89 #define DEFAULT_FEASTOLFACTOR 1.0 /**< default value for parameter to increase the feasibility tolerance in all sub-SCIPs */
90 
91 /*
92  * Data structures
93  */
94 
95 /** data related to one problem (see below) */
96 typedef struct Problem PROBLEM;
97 
98 /** data related to one component */
99 typedef struct Component
100 {
101  PROBLEM* problem; /**< the problem this component belongs to */
102  SCIP* subscip; /**< sub-SCIP representing the component */
103  SCIP_SOL* workingsol; /**< working solution for transferring solutions into the sub-SCIP */
104  SCIP_VAR** vars; /**< variables belonging to this component (in complete problem) */
105  SCIP_VAR** subvars; /**< variables belonging to this component (in subscip) */
106  SCIP_VAR** fixedvars; /**< variables in the original SCIP which were copied while copying the component's
107  * constraints, but do not count to the subvars, because they were locally fixed */
108  SCIP_VAR** fixedsubvars; /**< variables in the sub-SCIP which were copied while copying the component's
109  * constraints, but do not count to the subvars, because they were locally fixed */
110  SCIP_Real fixedvarsobjsum; /**< objective contribution of all locally fixed variables */
111  SCIP_Real lastdualbound; /**< dual bound after last optimization call for this component */
112  SCIP_Real lastprimalbound; /**< primal bound after last optimization call for this component */
113  SCIP_STATUS laststatus; /**< solution status of last optimization call for the sub-SCIP of this component */
114  SCIP_Bool solved; /**< was this component solved already? */
115  int ncalls; /**< number of optimization calls for this component */
116  int lastsolindex; /**< index of best solution after last optimization call for this component */
117  int lastbestsolindex; /**< index of last best solution transferred to this component from the main problem */
118  int nvars; /**< number of variables belonging to this component */
119  int nfixedvars; /**< number of fixed variables copied during constraint copying */
120  int fixedvarssize; /**< size of fixedvars and fixedsubvars arrays */
121  int number; /**< component number */
123 
124 /** data related to one problem
125  * (corresponding to one node in the branch-and-bound tree and consisting of multiple components)
126  */
127 struct Problem
128 {
129  SCIP* scip; /**< the SCIP instance this problem belongs to */
130  COMPONENT* components; /**< independent components into which the problem can be divided */
131  SCIP_PQUEUE* compqueue; /**< priority queue for components */
132  SCIP_SOL* bestsol; /**< best solution found so far for the problem */
133  char* name; /**< name of the problem */
134  SCIP_Real fixedvarsobjsum; /**< objective contribution of all locally fixed variables */
135  SCIP_Real lowerbound; /**< lower bound of the problem */
136  int ncomponents; /**< number of independent components into which the problem can be divided */
137  int componentssize; /**< size of components array */
138  int nfeascomps; /**< number of components for which a feasible solution was found */
139  int nsolvedcomps; /**< number of components solved to optimality */
140  int nlowerboundinf; /**< number of components with lower bound equal to -infinity */
141 };
142 
143 
144 /** constraint handler data */
145 struct SCIP_ConshdlrData
146 {
147  SCIP_Longint nodelimit; /**< maximum number of nodes to be solved in subproblems */
148  SCIP_Real intfactor; /**< the weight of an integer variable compared to binary variables */
149  SCIP_Real feastolfactor; /**< parameter to increase the feasibility tolerance in all sub-SCIPs */
150  int maxintvars; /**< maximum number of integer (or binary) variables to solve a subproblem
151  * directly (-1: no solving) */
152  int maxdepth; /**< maximum depth of a node to run components detection (-1: disable
153  * component detection during solving) */
154  int minsize; /**< minimum absolute size (in terms of variables) to solve a component
155  * individually during branch-and-bound */
156  SCIP_Real minrelsize; /**< minimum relative size (in terms of variables) to solve a component
157  * individually during branch-and-bound */
158  int subscipdepth; /**< depth offset of the current (sub-)problem compared to the original
159  * problem */
160 };
161 
162 
163 /** comparison method for sorting components */
164 static
165 SCIP_DECL_SORTPTRCOMP(componentSort)
166 {
167  SCIP* scip;
168  COMPONENT* comp1;
169  COMPONENT* comp2;
170  SCIP_Real gap1;
171  SCIP_Real gap2;
172 
173  assert(elem1 != NULL);
174  assert(elem2 != NULL);
175 
176  comp1 = (COMPONENT*)elem1;
177  comp2 = (COMPONENT*)elem2;
178 
179  if( comp1->ncalls == 0 )
180  if( comp2->ncalls == 0 )
181  return comp1->number - comp2->number;
182  else
183  return -1;
184  else if( comp2->ncalls == 0 )
185  return 1;
186 
187  /* the main sorting criterion is the absolute gap; however, we divide it by the number of solving calls for this
188  * component to diversify the search if one component does not improve
189  * @todo investigate other sorting criteria
190  */
191  gap1 = SQR(comp1->lastprimalbound - comp1->lastdualbound) / comp1->ncalls;
192  gap2 = SQR(comp2->lastprimalbound - comp2->lastdualbound) / comp2->ncalls;
193 
194  assert(comp1->problem != NULL);
195  assert(comp1->problem == comp2->problem);
196  assert(comp1->problem->scip == comp2->problem->scip);
197 
198  scip = comp1->problem->scip;
199  assert(scip != NULL);
200 
201  if( SCIPisFeasGT(scip, gap1, gap2) )
202  return -1;
203  else if( SCIPisFeasLT(scip, gap1, gap2) )
204  return +1;
205  else
206  return comp1->number - comp2->number;
207 }
208 
209 /** returns minimum size of components to be solved individually during the branch-and-bound search */
210 static
211 int getMinsize(
212  SCIP* scip, /**< main SCIP data structure */
213  SCIP_CONSHDLRDATA* conshdlrdata /**< constraint handler data */
214  )
215 {
216  int minsize;
217 
218  assert(conshdlrdata != NULL);
219 
220  minsize = (int)(conshdlrdata->minrelsize * SCIPgetNVars(scip));
221  minsize = MAX(minsize, conshdlrdata->minsize);
222 
223  return minsize;
224 }
225 
226 /** initialize component structure */
227 static
229  PROBLEM* problem /**< subproblem structure */
230  )
231 {
232  COMPONENT* component;
233  SCIP* scip;
234 
235  assert(problem != NULL);
236  assert(problem->ncomponents < problem->componentssize);
237 
238  scip = problem->scip;
239  assert(scip != NULL);
240 
241  component = &problem->components[problem->ncomponents];
242 
243  component->problem = problem;
244  component->subscip = NULL;
245  component->workingsol = NULL;
246  component->vars = NULL;
247  component->subvars = NULL;
248  component->fixedvars = NULL;
249  component->fixedsubvars = NULL;
250  component->fixedvarsobjsum = 0.0;
251  component->lastdualbound = -SCIPinfinity(scip);
252  component->lastprimalbound = SCIPinfinity(scip);
253  component->laststatus = SCIP_STATUS_UNKNOWN;
254  component->solved = FALSE;
255  component->ncalls = 0;
256  component->lastsolindex = -1;
257  component->lastbestsolindex = -1;
258  component->nvars = 0;
259  component->nfixedvars = 0;
260  component->fixedvarssize = 0;
261  component->number = problem->ncomponents;
262 
263  ++problem->ncomponents;
264 
265  return SCIP_OKAY;
266 }
267 
268 /** free component structure */
269 static
271  COMPONENT* component /**< pointer to component structure */
272  )
273 {
274  PROBLEM* problem;
275  SCIP* scip;
276 
277  assert(component != NULL);
278 
279  problem = component->problem;
280  assert(problem != NULL);
281 
282  scip = problem->scip;
283  assert(scip != NULL);
284 
285  SCIPdebugMsg(scip, "freeing component %d of problem <%s>\n", component->number, component->problem->name);
286 
287  assert((component->vars != NULL) == (component->subvars != NULL));
288  if( component->vars != NULL )
289  {
290  SCIPfreeBlockMemoryArray(scip, &component->vars, component->nvars);
291  SCIPfreeBlockMemoryArray(scip, &component->subvars, component->nvars);
292  }
293 
294  assert((component->fixedvars != NULL) == (component->fixedsubvars != NULL));
295  if( component->fixedvars != NULL )
296  {
297  SCIPfreeBlockMemoryArray(scip, &component->fixedsubvars, component->fixedvarssize);
298  SCIPfreeBlockMemoryArray(scip, &component->fixedvars, component->fixedvarssize);
299  }
300 
301  /* free sub-SCIP belonging to this component and the working solution */
302  if( component->subscip != NULL )
303  {
304  if( component->workingsol != NULL )
305  {
306  SCIP_CALL( SCIPfreeSol(component->subscip, &component->workingsol) );
307  }
308 
309  SCIP_CALL( SCIPfree(&component->subscip) );
310  }
311 
312  return SCIP_OKAY;
313 }
314 
315 
316 /** create the working solution for a given component, store fixed variables and the corresponding objective offset */
317 static
319  COMPONENT* component, /**< component structure */
320  SCIP_HASHMAP* varmap /**< variable hashmap */
321  )
322 {
323  SCIP* subscip;
324 
325  assert(component != NULL);
326 
327  subscip = component->subscip;
328  assert(subscip != NULL);
329  assert(SCIPgetStage(subscip) == SCIP_STAGE_PROBLEM);
330 
331  /* the solution should live in the primal, not the origprimal, of the sub-SCIP, so we need to transform it first */
332  SCIP_CALL( SCIPtransformProb(subscip) );
333  SCIP_CALL( SCIPcreateOrigSol(subscip, &(component->workingsol), NULL) );
334 
335  /* the number of variables was increased by copying the constraints */
336  if( SCIPgetNOrigVars(subscip) > component->nvars )
337  {
338  PROBLEM* problem;
339  SCIP* scip;
340  SCIP_VAR** sourcevars;
341  SCIP_VAR* subvar;
342  int nsourcevars;
343  int nnewvars;
344  int idx = 0;
345  int nvars;
346  int v;
347 
348  problem = component->problem;
349  assert(problem != NULL);
350 
351  scip = problem->scip;
352  assert(scip != NULL);
353 
354  sourcevars = SCIPgetVars(scip);
355  nsourcevars = SCIPgetNVars(scip);
356  nnewvars = SCIPgetNOrigVars(subscip);
357  nvars = component->nvars;
358 
359  component->fixedvarssize = nnewvars - nvars;
360  SCIP_CALL( SCIPallocBlockMemoryArray(scip, &component->fixedvars, component->fixedvarssize) );
361  SCIP_CALL( SCIPallocBlockMemoryArray(scip, &component->fixedsubvars, component->fixedvarssize) );
362 
363  for( v = 0; v < nsourcevars; ++v )
364  {
365  subvar = (SCIP_VAR*)SCIPhashmapGetImage(varmap, sourcevars[v]);
366  if( subvar != NULL && SCIPvarGetIndex(subvar) >= nvars )
367  {
368  /* the variable is either locally fixed or could be an inactive variable present in a constraint
369  * for which an aggregation constraint linking it to the active variable was created in the subscip
370  */
371  assert(SCIPisZero(subscip, SCIPvarGetObj(subvar)) ||
372  SCIPisEQ(subscip, SCIPvarGetLbGlobal(subvar), SCIPvarGetUbGlobal(subvar)));
373 
374  /* variable is globally fixed in sub-SCIP, so it was locally fixed in the main-SCIP */
375  if( SCIPisEQ(subscip, SCIPvarGetLbGlobal(subvar), SCIPvarGetUbGlobal(subvar)) )
376  {
377  assert(SCIPisEQ(scip, SCIPvarGetLbLocal(sourcevars[v]), SCIPvarGetUbLocal(sourcevars[v])));
378 
379  component->fixedvarsobjsum += SCIPvarGetLbGlobal(subvar) * SCIPvarGetObj(subvar);
380  component->fixedvars[idx] = sourcevars[v];
381  component->fixedsubvars[idx] = subvar;
382  ++idx;
383 
384  SCIP_CALL( SCIPsetSolVal(subscip, component->workingsol, subvar, SCIPvarGetLbGlobal(subvar)) );
385  }
386  /* inactive variable */
387  else
388  {
389  assert(SCIPisZero(subscip, SCIPvarGetObj(subvar)));
390  }
391  }
392  else
393  {
394  assert(subvar == NULL || SCIPisLT(scip, SCIPvarGetLbGlobal(sourcevars[v]), SCIPvarGetUbGlobal(sourcevars[v])));
395  assert(subvar == NULL || SCIPisLT(subscip, SCIPvarGetLbGlobal(subvar), SCIPvarGetUbGlobal(subvar)));
396  }
397  }
398  component->nfixedvars = idx;
399  assert(component->nfixedvars <= component->fixedvarssize);
400  SCIPdebugMsg(scip, "%d locally fixed variables have been copied, objective contribution: %g\n",
401  component->nfixedvars, component->fixedvarsobjsum);
402  }
403 
404  /* set up debug solution */
405 #ifdef WITH_DEBUG_SOLUTION
406  if( SCIPdebugSolIsEnabled(component->problem->scip) )
407  {
408  PROBLEM* problem;
409  SCIP* scip;
410  SCIP_Bool isvalid = FALSE;
411 
412  problem = component->problem;
413  assert(problem != NULL);
414 
415  scip = problem->scip;
416  assert(scip != NULL);
417 
418  SCIP_CALL( SCIPdebugSolIsValidInSubtree(scip, &isvalid) );
419 
420  if( isvalid )
421  {
422  SCIP_Real val;
423  int i;
424 
425  SCIPdebugSolEnable(component->subscip);
426 
427  for( i = 0; i < component->nvars; ++i )
428  {
429  if( component->subvars[i] != NULL )
430  {
431  SCIP_CALL( SCIPdebugGetSolVal(scip, component->vars[i], &val) );
432  SCIP_CALL( SCIPdebugAddSolVal(component->subscip, component->subvars[i], val) );
433  }
434  }
435  for( i = 0; i < component->nfixedvars; ++i )
436  {
437  if( component->fixedsubvars[i] != NULL )
438  {
439  SCIP_CALL( SCIPdebugGetSolVal(scip, component->fixedvars[i], &val) );
440  SCIP_CALL( SCIPdebugAddSolVal(component->subscip, component->fixedsubvars[i], val) );
441  }
442  }
443  }
444  }
445 #endif
446 
447  return SCIP_OKAY;
448 }
449 
450 /** create a sub-SCIP for the given variables and constraints */
451 static
453  SCIP* scip, /**< main SCIP data structure */
454  SCIP_CONSHDLRDATA* conshdlrdata, /**< constraint handler data */
455  SCIP** subscip /**< pointer to store created sub-SCIP */
456  )
457 {
458  SCIP_Bool success;
459 
460  assert(conshdlrdata != NULL);
461 
462  /* create a new SCIP instance */
463  SCIP_CALL( SCIPcreate(subscip) );
464 
465  /* copy plugins, we omit pricers (because we do not run if there are active pricers) and dialogs */
466 #ifdef SCIP_MORE_DEBUG /* we print statistics later, so we need to copy statistics tables */
467  SCIP_CALL( SCIPcopyPlugins(scip, *subscip, TRUE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE,
468  TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, TRUE, TRUE, TRUE, &success) );
469 #else
470  SCIP_CALL( SCIPcopyPlugins(scip, *subscip, TRUE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE,
471  TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, TRUE, TRUE, TRUE, &success) );
472 #endif
473 
474  /* the plugins were successfully copied */
475  if( success )
476  {
477  SCIP_CONSHDLR* newconshdlr;
478  SCIP_CONSHDLRDATA* newconshdlrdata;
479 #ifdef WITH_DEBUG_SOLUTION
480  SCIP_Bool isvalid = FALSE;
481 #endif
482 
483  /* copy parameter settings */
484  SCIP_CALL( SCIPcopyParamSettings(scip, *subscip) );
485 
486  /* some general settings should not be fixed */
487  assert(!SCIPisParamFixed(*subscip, "limits/solutions"));
488  assert(!SCIPisParamFixed(*subscip, "limits/bestsol"));
489  assert(!SCIPisParamFixed(*subscip, "misc/usevartable"));
490  assert(!SCIPisParamFixed(*subscip, "misc/useconstable"));
491  assert(!SCIPisParamFixed(*subscip, "numerics/feastol"));
492  assert(!SCIPisParamFixed(*subscip, "misc/usesmalltables"));
493 
494  /* disable solution limits */
495  SCIP_CALL( SCIPsetIntParam(*subscip, "limits/solutions", -1) );
496  SCIP_CALL( SCIPsetIntParam(*subscip, "limits/bestsol", -1) );
497  SCIP_CALL( SCIPresetParam(*subscip, "limits/objectivestop") );
498 
499  /* reduce the effort spent for hash tables; however, if the debug solution is enabled and valid in this subtree,
500  * hash tables are needed for installing the debug solution
501  */
502 #ifdef WITH_DEBUG_SOLUTION
503  SCIP_CALL( SCIPdebugSolIsValidInSubtree(scip, &isvalid) );
504  if( !isvalid && SCIPgetStage(scip) > SCIP_STAGE_PRESOLVING )
505 #endif
506  {
507  SCIP_CALL( SCIPsetBoolParam(*subscip, "misc/usevartable", FALSE) );
508  SCIP_CALL( SCIPsetBoolParam(*subscip, "misc/useconstable", FALSE) );
509  }
510 
511  /* disable presolving */
513 
514  /* disable component presolving and fix the parameter */
515  SCIP_CALL( SCIPsetIntParam(*subscip, "constraints/" CONSHDLR_NAME "/maxprerounds", 0) );
516  SCIP_CALL( SCIPfixParam(*subscip, "constraints/" CONSHDLR_NAME "/maxprerounds") );
517 
518  /* find the components constraint handler in the sub-SCIP and inform it about the actual depth in the tree */
519  newconshdlr = SCIPfindConshdlr(*subscip, CONSHDLR_NAME);
520  assert(newconshdlr != NULL);
521 
522  newconshdlrdata = SCIPconshdlrGetData(newconshdlr);
523  assert(newconshdlrdata != NULL);
524  newconshdlrdata->subscipdepth = conshdlrdata->subscipdepth + SCIPgetDepth(scip);
525 
526  /* disable output, unless in extended debug mode */
527 #ifndef SCIP_MORE_DEBUG
528  SCIP_CALL( SCIPsetIntParam(*subscip, "display/verblevel", 0) );
529 #endif
530  }
531  else
532  {
533  SCIP_CALL( SCIPfree(subscip) );
534  *subscip = NULL;
535  }
536 
537  return SCIP_OKAY;
538 }
539 
540 /** copies the given variables and constraints to the given sub-SCIP */
541 static
543  SCIP* scip, /**< source SCIP */
544  SCIP* subscip, /**< target SCIP */
545  const char* name, /**< name for copied problem */
546  SCIP_VAR** vars, /**< array of variables to copy */
547  SCIP_VAR** subvars, /**< array to fill with copied vars */
548  SCIP_CONS** conss, /**< constraint to copy */
549  SCIP_HASHMAP* varmap, /**< hashmap used for the copy process of variables */
550  SCIP_HASHMAP* consmap, /**< hashmap used for the copy process of constraints */
551  int nvars, /**< number of variables to copy */
552  int nconss, /**< number of constraints to copy */
553  SCIP_Bool* success /**< pointer to store whether copying was successful */
554  )
555 {
556  SCIP_CONS* newcons;
557  int i;
558 
559  assert(scip != NULL);
560  assert(subscip != NULL);
561  assert(vars != NULL);
562  assert(subvars != NULL);
563  assert(conss != NULL);
564  assert(varmap != NULL);
565  assert(consmap != NULL);
566  assert(success != NULL);
567 
568  *success = TRUE;
569 
570  /* create problem in sub-SCIP */
571  SCIP_CALL( SCIPcopyProb(scip, subscip, varmap, consmap, FALSE, name) );
572 
573  /* copy variables */
574  for( i = 0; i < nvars; ++i )
575  {
576  SCIP_CALL( SCIPgetVarCopy(scip, subscip, vars[i], &subvars[i], varmap, consmap, FALSE, success) );
577 
578  /* abort if variable was not successfully copied */
579  if( !(*success) )
580  return SCIP_OKAY;
581  }
582 
583  /* copy constraints */
584  for( i = 0; i < nconss; ++i )
585  {
586  assert(!SCIPconsIsModifiable(conss[i]));
587 
588  /* copy the constraint */
589  SCIP_CALL( SCIPgetConsCopy(scip, subscip, conss[i], &newcons, SCIPconsGetHdlr(conss[i]), varmap, consmap, NULL,
590  SCIPconsIsInitial(conss[i]), SCIPconsIsSeparated(conss[i]), SCIPconsIsEnforced(conss[i]),
591  SCIPconsIsChecked(conss[i]), SCIPconsIsPropagated(conss[i]), FALSE, FALSE,
592  SCIPconsIsDynamic(conss[i]), SCIPconsIsRemovable(conss[i]), FALSE, FALSE, success) );
593 
594  /* abort if constraint was not successfully copied */
595  if( !(*success) )
596  return SCIP_OKAY;
597 
598  SCIP_CALL( SCIPaddCons(subscip, newcons) );
599  SCIP_CALL( SCIPreleaseCons(subscip, &newcons) );
600  }
601 
602  return SCIP_OKAY;
603 }
604 
605 /** create the sub-SCIP for a given component */
606 static
608  COMPONENT* component, /**< component structure */
609  SCIP_CONSHDLRDATA* conshdlrdata, /**< constraint handler data */
610  SCIP_HASHMAP* varmap, /**< variable hashmap used to improve performance */
611  SCIP_HASHMAP* consmap, /**< constraint hashmap used to improve performance */
612  SCIP_CONS** conss, /**< constraints contained in this component */
613  int nconss, /**< number of constraints contained in this component */
614  SCIP_Bool* success /**< pointer to store whether the copying process was successful */
615  )
616 {
617  char name[SCIP_MAXSTRLEN];
618  PROBLEM* problem;
619  SCIP* scip;
620  int minsize;
621 
622  assert(component != NULL);
623  assert(consmap != NULL);
624  assert(conss != NULL);
625  assert(success != NULL);
626  assert(component->nvars > 0);
627 
628  problem = component->problem;
629  assert(problem != NULL);
630 
631  scip = problem->scip;
632  assert(scip != NULL);
633 
634  (*success) = TRUE;
635 
636  SCIP_CALL( createSubscip(scip, conshdlrdata, &component->subscip) );
637 
638  if( component->subscip != NULL )
639  {
640  /* get minimum size of components to solve individually and set the parameter in the sub-SCIP */
641  minsize = getMinsize(scip, conshdlrdata);
642 
643  SCIP_CALL( SCIPsetIntParam(component->subscip, "constraints/" CONSHDLR_NAME "/minsize", minsize) );
644 
645  /* get name of the original problem and add "comp_nr" */
646  (void) SCIPsnprintf(name, SCIP_MAXSTRLEN, "%s_comp_%d", problem->name, component->number);
647 
648  SCIP_CALL( copyToSubscip(scip, component->subscip, name, component->vars, component->subvars,
649  conss, varmap, consmap, component->nvars, nconss, success) );
650 
651  if( !(*success) )
652  {
653  SCIP_CALL( SCIPfree(&component->subscip) );
654  component->subscip = NULL;
655  }
656  }
657  else
658  (*success) = FALSE;
659 
660  return SCIP_OKAY;
661 }
662 
663 /** solve a given sub-SCIP up to the given limits */
664 static
666  SCIP* scip, /**< main SCIP */
667  SCIP* subscip, /**< sub-SCIP to solve */
668  SCIP_Longint nodelimit, /**< node limit */
669  SCIP_Real gaplimit /**< gap limit */
670  )
671 {
672  SCIP_Real timelimit;
673  SCIP_Real memorylimit;
674  SCIP_Bool avoidmemout;
675 
676  assert(scip != NULL);
677  assert(subscip != NULL);
678 
679  /* set time limit */
680  SCIP_CALL( SCIPgetRealParam(scip, "limits/time", &timelimit) );
681  if( !SCIPisInfinity(scip, timelimit) )
682  {
683  timelimit -= SCIPgetSolvingTime(scip);
684  timelimit += SCIPgetSolvingTime(subscip);
685  }
686 
687  /* subtract the memory already used by the main SCIP and the estimated memory usage of external software */
688  /* @todo count memory of other components */
689  SCIP_CALL( SCIPgetRealParam(scip, "limits/memory", &memorylimit) );
690  if( !SCIPisInfinity(scip, memorylimit) )
691  {
692  memorylimit -= SCIPgetMemUsed(scip)/1048576.0;
693  memorylimit -= SCIPgetMemExternEstim(scip)/1048576.0;
694  }
695 
696  /* check if mem limit needs to be avoided */
697  SCIP_CALL( SCIPgetBoolParam(scip, "misc/avoidmemout", &avoidmemout) );
698 
699  /* abort if no time is left or not enough memory (we don't abort in this case if misc_avoidmemout == TRUE)
700  * to create a copy of SCIP, including external memory usage */
701  if( avoidmemout && memorylimit <= 0.0 )
702  {
703  SCIPdebugMsg(scip, "--> not solved (not enough memory left)\n");
704  return SCIP_OKAY;
705  }
706  else if( timelimit <= 0.0 )
707  {
708  SCIPdebugMsg(scip, "--> not solved (not enough time left)\n");
709  return SCIP_OKAY;
710  }
711 
712  /* SCIP copy limits will set wrong time limits since it does not take into account time spent already in the
713  * sub-SCIP; nevertheless, we call it to set the memory limit and unset all other limits, if set in the main SCIP
714  */
715  SCIP_CALL( SCIPcopyLimits(scip, subscip) );
716 
717  /* set time and memory limit for the subproblem */
718  SCIP_CALL( SCIPsetRealParam(subscip, "limits/time", timelimit) );
719 
720  /* only set soft time limit if it exists */
721  if( SCIPgetParam(scip, "limits/softtime") != NULL )
722  {
723  SCIP_Real softtimelimit;
724 
725  /* set soft time limit, if specified in main SCIP and if it exists */
726  SCIP_CALL( SCIPgetRealParam(scip, "limits/softtime", &softtimelimit) );
727  if( softtimelimit > -0.5 )
728  {
729  softtimelimit -= SCIPgetSolvingTime(scip);
730  softtimelimit += SCIPgetSolvingTime(subscip);
731  softtimelimit = MAX(softtimelimit, 0.0);
732  }
733 
734  SCIP_CALL( SCIPsetRealParam(subscip, "limits/softtime", softtimelimit) );
735  }
736 
737  /* set gap limit */
738  SCIP_CALL( SCIPsetRealParam(subscip, "limits/gap", gaplimit) );
739 
740  /* set node limit */
741  SCIP_CALL( SCIPsetLongintParam(subscip, "limits/nodes", nodelimit) );
742 
743  /* solve the subproblem */
744  SCIP_CALL( SCIPsolve(subscip) );
745 
746 #ifdef SCIP_MORE_DEBUG
747  SCIP_CALL( SCIPprintBestSol(subscip, NULL, FALSE) );
748  SCIP_CALL( SCIPprintStatistics(subscip, NULL) );
749 #endif
750 
751  return SCIP_OKAY;
752 }
753 
754 /** solve a connected component during presolving and evaluate the result */
755 static
757  SCIP* scip, /**< SCIP main data structure */
758  SCIP_CONSHDLRDATA* conshdlrdata, /**< the components constraint handler data */
759  SCIP* subscip, /**< sub-SCIP to be solved */
760  SCIP_VAR** vars, /**< array of variables copied to this component */
761  SCIP_VAR** subvars, /**< array of sub-SCIP variables corresponding to the vars array */
762  SCIP_CONS** conss, /**< array of constraints copied to this component */
763  int nvars, /**< number of variables copied to this component */
764  int nconss, /**< number of constraints copied to this component */
765  int* ndeletedconss, /**< pointer to store the number of deleted constraints */
766  int* nfixedvars, /**< pointer to store the number of fixed variables */
767  int* ntightenedbounds, /**< pointer to store the number of bound tightenings */
768  SCIP_RESULT* result, /**< pointer to store the result of the component solving */
769  SCIP_Bool* solved /**< pointer to store if the problem was solved to optimality */
770  )
771 {
772  int i;
773 
774  assert(scip != NULL);
775  assert(conshdlrdata != NULL);
776  assert(subscip != NULL);
777  assert(vars != NULL);
778  assert(conss != NULL);
779  assert(ndeletedconss != NULL);
780  assert(nfixedvars != NULL);
781  assert(ntightenedbounds != NULL);
782  assert(result != NULL);
783 
784  *solved = FALSE;
785 
786  SCIP_CALL( solveSubscip(scip, subscip, conshdlrdata->nodelimit, 0.0) );
787 
788  if( SCIPgetStatus(subscip) == SCIP_STATUS_OPTIMAL )
789  {
790  SCIP_SOL* sol;
791  SCIP_VAR* var;
792  SCIP_VAR* subvar;
793  SCIP_Real* fixvals;
794  SCIP_Bool feasible;
795  SCIP_Bool infeasible;
796  SCIP_Bool fixed;
797 
798  sol = SCIPgetBestSol(subscip);
799 
800 #ifdef SCIP_DEBUG
801  SCIP_CALL( SCIPcheckSolOrig(subscip, sol, &feasible, TRUE, TRUE) );
802 #else
803  SCIP_CALL( SCIPcheckSolOrig(subscip, sol, &feasible, FALSE, FALSE) );
804 #endif
805 
806  SCIPdebugMsg(scip, "--> solved to optimality: time = %.2f, solution is%s feasible\n", SCIPgetSolvingTime(subscip), feasible ? "" : " not");
807 
808  SCIP_CALL( SCIPallocBufferArray(scip, &fixvals, nvars) );
809 
810  if( feasible )
811  {
812  SCIP_Real glb;
813  SCIP_Real gub;
814 
815  /* get values of variables in the optimal solution */
816  for( i = 0; i < nvars; ++i )
817  {
818  var = vars[i];
819  subvar = subvars[i];
820 
821  /* get global bounds */
822  glb = SCIPvarGetLbGlobal(var);
823  gub = SCIPvarGetUbGlobal(var);
824 
825  if( subvar != NULL )
826  {
827  /* get solution value from optimal solution of the sub-SCIP */
828  fixvals[i] = SCIPgetSolVal(subscip, sol, subvar);
829 
830  assert(SCIPisFeasLE(scip, fixvals[i], SCIPvarGetUbLocal(var)));
831  assert(SCIPisFeasGE(scip, fixvals[i], SCIPvarGetLbLocal(var)));
832 
833  /* checking a solution is done with a relative tolerance of feasibility epsilon, if we really want to
834  * change the bounds of the variables by fixing them, the old bounds must not be violated by more than
835  * the absolute epsilon; therefore, we change the fixing values, if needed, and mark that the solution
836  * has to be checked again
837  */
838  if( SCIPisGT(scip, fixvals[i], gub) )
839  {
840  SCIPdebugMsg(scip, "variable <%s> fixval: %f violates global upperbound: %f\n",
841  SCIPvarGetName(var), fixvals[i], gub);
842  fixvals[i] = gub;
843  feasible = FALSE;
844  }
845  else if( SCIPisLT(scip, fixvals[i], glb) )
846  {
847  SCIPdebugMsg(scip, "variable <%s> fixval: %f violates global lowerbound: %f\n",
848  SCIPvarGetName(var), fixvals[i], glb);
849  fixvals[i] = glb;
850  feasible = FALSE;
851  }
852  assert(SCIPisLE(scip, fixvals[i], SCIPvarGetUbLocal(var)));
853  assert(SCIPisGE(scip, fixvals[i], SCIPvarGetLbLocal(var)));
854  }
855  else
856  {
857  /* the variable was not copied, so it was cancelled out of constraints during copying;
858  * thus, the variable is not constrained and we fix it to its best bound
859  */
860  if( SCIPisPositive(scip, SCIPvarGetObj(var)) )
861  fixvals[i] = glb;
862  else if( SCIPisNegative(scip, SCIPvarGetObj(var)) )
863  fixvals[i] = gub;
864  else
865  {
866  fixvals[i] = 0.0;
867  fixvals[i] = MIN(fixvals[i], gub);
868  fixvals[i] = MAX(fixvals[i], glb);
869  }
870  }
871  }
872 
873  /* the solution value of at least one variable is feasible with a relative tolerance of feasibility epsilon,
874  * but infeasible with an absolute tolerance of epsilon; try to set the variables to the bounds and check
875  * solution again in the original space (changing the values might now introduce infeasibilities of constraints)
876  */
877  if( !feasible )
878  {
879  SCIP_Real origobj;
880 
881  SCIPdebugMsg(scip, "solution violates bounds by more than epsilon, check the corrected solution...\n");
882 
883  origobj = SCIPgetSolOrigObj(subscip, SCIPgetBestSol(subscip));
884 
885  SCIP_CALL( SCIPfreeTransform(subscip) );
886 
887  SCIP_CALL( SCIPcreateOrigSol(subscip, &sol, NULL) );
888 
889  /* set solution values of variables */
890  for( i = 0; i < nvars; ++i )
891  {
892  if( subvars[i] != NULL )
893  {
894  SCIP_CALL( SCIPsetSolVal(subscip, sol, subvars[i], fixvals[i]) );
895  }
896  }
897 
898  /* check the solution; integrality and bounds should be fulfilled and do not have to be checked */
899  SCIP_CALL( SCIPcheckSol(subscip, sol, FALSE, FALSE, FALSE, FALSE, TRUE, &feasible) );
900 
901 #ifndef NDEBUG
902  /* in debug mode, we additionally check integrality and bounds */
903  if( feasible )
904  {
905  SCIP_CALL( SCIPcheckSol(subscip, sol, FALSE, FALSE, TRUE, TRUE, FALSE, &feasible) );
906  assert(feasible);
907  }
908 #endif
909 
910  SCIPdebugMsg(scip, "--> corrected solution is%s feasible\n", feasible ? "" : " not");
911 
912  if( !SCIPisFeasEQ(subscip, SCIPsolGetOrigObj(sol), origobj) )
913  {
914  SCIPdebugMsg(scip, "--> corrected solution has a different objective value (old = %.9g, corrected = %.9g)\n",
915  origobj, SCIPsolGetOrigObj(sol));
916 
917  feasible = FALSE;
918  }
919 
920  SCIP_CALL( SCIPfreeSol(subscip, &sol) );
921  }
922 
923  /* if the solution is feasible, fix variables and delete constraints of the component */
924  if( feasible )
925  {
926  /* fix variables */
927  for( i = 0; i < nvars; ++i )
928  {
929  assert(SCIPisLE(scip, fixvals[i], SCIPvarGetUbLocal(vars[i])));
930  assert(SCIPisGE(scip, fixvals[i], SCIPvarGetLbLocal(vars[i])));
931  assert(SCIPisLE(scip, fixvals[i], SCIPvarGetUbGlobal(vars[i])));
932  assert(SCIPisGE(scip, fixvals[i], SCIPvarGetLbGlobal(vars[i])));
933 
934  SCIP_CALL( SCIPfixVar(scip, vars[i], fixvals[i], &infeasible, &fixed) );
936  assert(!infeasible);
937  assert(fixed);
938  (*nfixedvars)++;
939  }
940 
941  /* delete constraints */
942  for( i = 0; i < nconss; ++i )
943  {
944  SCIP_CALL( SCIPdelCons(scip, conss[i]) );
945  (*ndeletedconss)++;
946  }
947 
948  *result = SCIP_SUCCESS;
949  *solved = TRUE;
950  }
951  }
952 
953  SCIPfreeBufferArray(scip, &fixvals);
954  }
955  else if( SCIPgetStatus(subscip) == SCIP_STATUS_INFEASIBLE )
956  {
957  *result = SCIP_CUTOFF;
958  }
959  else if( SCIPgetStatus(subscip) == SCIP_STATUS_UNBOUNDED || SCIPgetStatus(subscip) == SCIP_STATUS_INFORUNBD )
960  {
961  /* TODO: store unbounded ray in original SCIP data structure */
962  *result = SCIP_UNBOUNDED;
963  }
964  else
965  {
966  SCIPdebugMsg(scip, "--> solving interrupted (status = %d, time = %.2f)\n",
967  SCIPgetStatus(subscip), SCIPgetSolvingTime(subscip));
968 
969  /* transfer global fixings to the original problem; we can only do this, if we did not find a solution in the
970  * subproblem, because otherwise, the primal bound might lead to dual reductions that cannot be transferred to
971  * the original problem without also transferring the possibly suboptimal solution (which is currently not
972  * possible)
973  */
974  if( SCIPgetNSols(subscip) == 0 )
975  {
976  SCIP_Bool infeasible;
977  SCIP_Bool tightened;
978  int ntightened;
979 
980  ntightened = 0;
981 
982  for( i = 0; i < nvars; ++i )
983  {
984  if( subvars[i] == NULL )
985  continue;
986 
987  SCIP_CALL( SCIPtightenVarLb(scip, vars[i], SCIPvarGetLbGlobal(subvars[i]), FALSE,
988  &infeasible, &tightened) );
989  assert(!infeasible);
990  if( tightened )
991  ntightened++;
992 
993  SCIP_CALL( SCIPtightenVarUb(scip, vars[i], SCIPvarGetUbGlobal(subvars[i]), FALSE,
994  &infeasible, &tightened) );
995  assert(!infeasible);
996  if( tightened )
997  ntightened++;
998  }
999 
1000  *result = SCIP_SUCCESS;
1001 
1002  *ntightenedbounds += ntightened;
1003 
1004  SCIPdebugMsg(scip, "--> tightened %d bounds of variables due to global bounds in the sub-SCIP\n", ntightened);
1005  }
1006  }
1007 
1008  return SCIP_OKAY;
1009 }
1010 
1011 /** (continues) solving a connected component */
1012 static
1014  COMPONENT* component, /**< component structure */
1015  SCIP_Bool lastcomponent, /**< is this the last component to be solved? */
1016  SCIP_RESULT* result /**< pointer to store the result of the solving process */
1017  )
1018 {
1019  PROBLEM* problem;
1020  SCIP* scip;
1021  SCIP* subscip;
1022  SCIP_SOL* bestsol;
1023  SCIP_Longint nodelimit;
1024  SCIP_Longint lastnnodes;
1025  SCIP_Real gaplimit;
1026  SCIP_STATUS status;
1027 
1028  assert(component != NULL);
1029 
1030  problem = component->problem;
1031  assert(problem != NULL);
1032 
1033  scip = problem->scip;
1034  assert(scip != NULL);
1035 
1036  subscip = component->subscip;
1037  assert(subscip != NULL);
1038 
1039  *result = SCIP_DIDNOTRUN;
1040 
1041  SCIPdebugMsg(scip, "solve component <%s> (ncalls = %d, absgap = %.9g)\n",
1042  SCIPgetProbName(subscip), component->ncalls, component->lastprimalbound - component->lastdualbound);
1043 
1044  bestsol = SCIPgetBestSol(scip);
1045 
1046  /* update best solution of component */
1047  if( bestsol != NULL && SCIPsolGetIndex(bestsol) != component->lastbestsolindex )
1048  {
1049  SCIP_SOL* compsol = component->workingsol;
1050  SCIP_VAR** vars = component->vars;
1051  SCIP_VAR** subvars = component->subvars;
1052  int nvars = component->nvars;
1053  int v;
1054 
1055  component->lastbestsolindex = SCIPsolGetIndex(bestsol);
1056 
1057  /* set solution values of component variables */
1058  for( v = 0; v < nvars; ++v )
1059  {
1060  if( subvars[v] != NULL )
1061  {
1062  SCIP_CALL( SCIPsetSolVal(subscip, compsol, subvars[v], SCIPgetSolVal(scip, bestsol, vars[v])) );
1063  }
1064  }
1065 #ifndef NDEBUG
1066  for( v = 0; v < component->nfixedvars; ++v )
1067  {
1068  if( component->fixedsubvars[v] != NULL )
1069  assert(SCIPisEQ(scip, SCIPgetSolVal(subscip, compsol, component->fixedsubvars[v]),
1070  SCIPvarGetLbGlobal(component->fixedsubvars[v])));
1071  }
1072 #endif
1073 
1074  if( SCIPgetStage(subscip) == SCIP_STAGE_PROBLEM
1075  || SCIPisLT(subscip, SCIPgetSolOrigObj(subscip, compsol), SCIPgetPrimalbound(subscip)) )
1076  {
1077  SCIP_Bool feasible;
1078 
1079  SCIPdebugMsg(scip, "checking new solution in component <%s> inherited from problem <%s>: primal bound %.9g --> %.9g\n",
1080  SCIPgetProbName(subscip), problem->name,
1081  SCIPgetStage(subscip) == SCIP_STAGE_PROBLEM ? SCIPinfinity(subscip) : SCIPgetPrimalbound(subscip),
1082  SCIPgetSolOrigObj(subscip, compsol));
1083 
1084  SCIP_CALL( SCIPcheckSolOrig(subscip, compsol, &feasible, FALSE, FALSE) );
1085  if( feasible )
1086  {
1087  SCIPdebugMsg(scip,"... feasible, adding solution.\n");
1088 
1089  SCIP_CALL( SCIPaddSol(subscip, compsol, &feasible) );
1090  }
1091 
1092  /* We cannot take the value of compsol as a cutoff bound if it was not feasible; some of the fixed connecting
1093  * variables are different and might not allow for a better solution in this component, but still for far
1094  * better solutions in other components. Therefore, the only cutoffbound we can apply is the cutoffbound
1095  * of the problem reduced by the dual bounds of the other components
1096  */
1097  if( problem->nlowerboundinf == 0 || (problem->nlowerboundinf == 1
1098  && SCIPisInfinity(scip, -component->lastdualbound)) )
1099  {
1100  SCIP_Real newcutoffbound = SCIPgetSolTransObj(scip, bestsol);
1101 
1102  assert(problem->nlowerboundinf > 0 || SCIPisGE(scip, newcutoffbound, problem->lowerbound));
1103 
1104  newcutoffbound = newcutoffbound - problem->lowerbound + component->fixedvarsobjsum;
1105 
1106  if( problem->nlowerboundinf == 0 )
1107  newcutoffbound += component->lastdualbound;
1108 
1109  if( SCIPisSumLT(subscip, newcutoffbound, SCIPgetCutoffbound(subscip)) )
1110  {
1111  SCIPdebugMsg(scip, "update cutoff bound to %.9g\n", newcutoffbound);
1112 
1113  SCIP_CALL( SCIPupdateCutoffbound(subscip, newcutoffbound) );
1114  }
1115  }
1116  }
1117  }
1118 
1119  assert(component->laststatus != SCIP_STATUS_OPTIMAL);
1120 
1121  SCIPdebugMsg(scip, "solve sub-SCIP for component <%s> (ncalls = %d, absgap = %.9g)\n",
1122  SCIPgetProbName(component->subscip), component->ncalls, component->lastprimalbound - component->lastdualbound);
1123 
1124  if( component->ncalls == 0 )
1125  {
1126  nodelimit = 1LL;
1127  gaplimit = 0.0;
1128 
1129  lastnnodes = 0;
1130  }
1131  else
1132  {
1133  SCIP_Longint mainnodelimit;
1134 
1135  lastnnodes = SCIPgetNNodes(component->subscip);
1136 
1137  SCIP_CALL( SCIPgetLongintParam(scip, "limits/nodes", &mainnodelimit) );
1138 
1139  nodelimit = 2 * lastnnodes;
1140  nodelimit = MAX(nodelimit, 10LL);
1141 
1142  if( mainnodelimit != -1 )
1143  {
1144  assert(mainnodelimit >= lastnnodes);
1145  nodelimit = MIN(nodelimit, mainnodelimit - lastnnodes);
1146  }
1147 
1148  /* set a gap limit of half the current gap (at most 10%) */
1149  if( SCIPgetGap(component->subscip) < 0.2 )
1150  gaplimit = 0.5 * SCIPgetGap(component->subscip);
1151  else
1152  gaplimit = 0.1;
1153 
1154  if( lastcomponent )
1155  gaplimit = 0.0;
1156  }
1157 
1158  SCIP_CALL( solveSubscip(scip, subscip, nodelimit, gaplimit) );
1159 
1160  SCIPaddNNodes(scip, SCIPgetNNodes(subscip) - lastnnodes);
1161 
1163 
1164  status = SCIPgetStatus(subscip);
1165 
1166  component->laststatus = status;
1167  ++component->ncalls;
1168 
1169  SCIPdebugMsg(scip, "--> (status = %d, nodes = %lld, time = %.2f): gap = %.5g%%, absgap = %.9g\n",
1170  status, SCIPgetNNodes(subscip), SCIPgetSolvingTime(subscip), 100.0*SCIPgetGap(subscip),
1171  SCIPgetPrimalbound(subscip) - SCIPgetDualbound(subscip));
1172 
1173  *result = SCIP_SUCCESS;
1174 
1175  switch( status )
1176  {
1177  case SCIP_STATUS_OPTIMAL:
1178  component->solved = TRUE;
1179  break;
1181  component->solved = TRUE;
1182 
1183  /* the problem is really infeasible */
1184  if( SCIPisInfinity(subscip, SCIPgetPrimalbound(subscip)) )
1185  {
1186  *result = SCIP_CUTOFF;
1187  }
1188  /* the cutoff bound was reached; no solution better than the cutoff bound exists */
1189  else
1190  {
1191  *result = SCIP_SUCCESS;
1192  component->laststatus = SCIP_STATUS_OPTIMAL;
1193  assert(SCIPisLE(subscip, SCIPgetDualbound(subscip), SCIPgetPrimalbound(subscip)));
1194  }
1195  break;
1196  case SCIP_STATUS_UNBOUNDED:
1197  case SCIP_STATUS_INFORUNBD:
1198  /* TODO: store unbounded ray in original SCIP data structure */
1199  *result = SCIP_UNBOUNDED;
1200  component->solved = TRUE;
1201  break;
1203  SCIP_CALL( SCIPinterruptSolve(scip) );
1204  break;
1205  case SCIP_STATUS_TERMINATE:
1206  case SCIP_STATUS_UNKNOWN:
1207  case SCIP_STATUS_NODELIMIT:
1210  case SCIP_STATUS_TIMELIMIT:
1211  case SCIP_STATUS_MEMLIMIT:
1212  case SCIP_STATUS_GAPLIMIT:
1213  case SCIP_STATUS_SOLLIMIT:
1216  default:
1217  break;
1218  }
1219 
1220  /* evaluate call */
1221  if( *result == SCIP_SUCCESS )
1222  {
1223  SCIP_SOL* sol = SCIPgetBestSol(subscip);
1224  SCIP_VAR* var;
1225  SCIP_VAR* subvar;
1226  SCIP_Real newdualbound;
1227  int v;
1228 
1229  /* get dual bound as the minimum of SCIP dual bound and sub-problems dual bound */
1230  newdualbound = SCIPgetDualbound(subscip) - component->fixedvarsobjsum;
1231 
1232  /* update dual bound of problem */
1233  if( !SCIPisEQ(scip, component->lastdualbound, newdualbound) )
1234  {
1235  assert(!SCIPisInfinity(scip, -newdualbound));
1236 
1237  /* first finite dual bound: decrease inf counter and add dual bound to problem dualbound */
1238  if( SCIPisInfinity(scip, -component->lastdualbound) )
1239  {
1240  --problem->nlowerboundinf;
1241  problem->lowerbound += newdualbound;
1242  }
1243  /* increase problem dual bound by dual bound delta */
1244  else
1245  {
1246  problem->lowerbound += (newdualbound - component->lastdualbound);
1247  }
1248 
1249  /* update problem dual bound if all problem components have a finite dual bound */
1250  if( problem->nlowerboundinf == 0 )
1251  {
1252  SCIPdebugMsg(scip, "component <%s>: dual bound increased from %.9g to %.9g, new dual bound of problem <%s>: %.9g (gap = %.9g, absgap = %.9g)\n",
1253  SCIPgetProbName(subscip), component->lastdualbound, newdualbound, problem->name,
1254  SCIPretransformObj(scip, problem->lowerbound),
1255  problem->nfeascomps == problem->ncomponents ?
1256  (SCIPgetSolOrigObj(scip, problem->bestsol) - SCIPretransformObj(scip, problem->lowerbound)) /
1257  MAX( ABS( SCIPretransformObj(scip, problem->lowerbound) ), SCIPgetSolOrigObj(scip, problem->bestsol) ) /*lint !e666*/
1258  : SCIPinfinity(scip),
1259  problem->nfeascomps == problem->ncomponents ?
1260  SCIPgetSolOrigObj(scip, problem->bestsol) - SCIPretransformObj(scip, problem->lowerbound) : SCIPinfinity(scip));
1261  SCIP_CALL( SCIPupdateLocalLowerbound(scip, problem->lowerbound) );
1262  }
1263 
1264  /* store dual bound of this call */
1265  component->lastdualbound = newdualbound;
1266  }
1267 
1268  /* update primal solution of problem */
1269  if( sol != NULL && component->lastsolindex != SCIPsolGetIndex(sol) )
1270  {
1271  component->lastsolindex = SCIPsolGetIndex(sol);
1272 
1273  if( SCIPsolGetHeur(sol) != NULL )
1275  else
1276  SCIPsolSetHeur(problem->bestsol, NULL);
1277 
1278  /* increase counter for feasible problems if no solution was known before */
1279  if( SCIPisInfinity(scip, component->lastprimalbound) )
1280  ++(problem->nfeascomps);
1281 
1282  /* update working best solution in problem */
1283  for( v = 0; v < component->nvars; ++v )
1284  {
1285  var = component->vars[v];
1286  subvar = component->subvars[v];
1287  assert(var != NULL);
1288  assert(SCIPvarIsActive(var));
1289 
1290  if( subvar == NULL )
1291  continue;
1292 
1293  SCIP_CALL( SCIPsetSolVal(scip, problem->bestsol, var, SCIPgetSolVal(subscip, sol, subvar)) );
1294  }
1295 
1296  /* if we have a feasible solution for each component, add the working solution to the main problem */
1297  if( problem->nfeascomps == problem->ncomponents )
1298  {
1299  SCIP_Bool feasible;
1300 #ifdef SCIP_MORE_DEBUG
1301  SCIP_CALL( SCIPcheckSol(scip, problem->bestsol, TRUE, FALSE, TRUE, TRUE, TRUE, &feasible) );
1302  assert(feasible);
1303 #endif
1304  SCIP_CALL( SCIPaddSol(scip, problem->bestsol, &feasible) );
1305 
1306  SCIPdebugMsg(scip, "component <%s>: primal bound decreased from %.9g to %.9g, new primal bound of problem <%s>: %.9g (gap = %.9g, absgap = %.9g)\n",
1307  SCIPgetProbName(subscip), component->lastprimalbound, SCIPgetPrimalbound(subscip), problem->name,
1308  SCIPgetSolOrigObj(scip, problem->bestsol),
1309  problem->nfeascomps == problem->ncomponents ?
1310  (SCIPgetSolOrigObj(scip, problem->bestsol) - SCIPretransformObj(scip, problem->lowerbound)) /
1311  MAX( ABS( SCIPretransformObj(scip, problem->lowerbound) ),SCIPgetSolOrigObj(scip, problem->bestsol) ) /*lint !e666*/
1312  : SCIPinfinity(scip),
1313  problem->nfeascomps == problem->ncomponents ?
1314  SCIPgetSolOrigObj(scip, problem->bestsol) - SCIPretransformObj(scip, problem->lowerbound) : SCIPinfinity(scip));
1315  }
1316 
1317  /* store primal bound of this call */
1318  component->lastprimalbound = SCIPgetPrimalbound(subscip) - component->fixedvarsobjsum;
1319  }
1320 
1321  /* if the component was solved to optimality, we increase the respective counter and free the subscip */
1322  if( component->laststatus == SCIP_STATUS_OPTIMAL || component->laststatus == SCIP_STATUS_INFEASIBLE ||
1323  component->laststatus == SCIP_STATUS_UNBOUNDED || component->laststatus == SCIP_STATUS_INFORUNBD )
1324  {
1325  ++(problem->nsolvedcomps);
1326  component->solved = TRUE;
1327 
1328  /* free working solution and component */
1329  SCIP_CALL( SCIPfreeSol(subscip, &component->workingsol) );
1330 
1331  SCIP_CALL( SCIPfree(&subscip) );
1332  component->subscip = NULL;
1333  }
1334  }
1335 
1336  return SCIP_OKAY;
1337 }
1338 
1339 /** initialize subproblem structure */
1340 static
1342  SCIP* scip, /**< SCIP data structure */
1343  PROBLEM** problem, /**< pointer to subproblem structure */
1344  SCIP_Real fixedvarsobjsum, /**< objective contribution of all locally fixed variables */
1345  int ncomponents /**< number of independent components */
1346  )
1347 {
1348  char name[SCIP_MAXSTRLEN];
1349  SCIP_VAR** vars;
1350  int nvars;
1351  int v;
1352 
1353  assert(scip != NULL);
1354  assert(problem != NULL);
1355 
1356  vars = SCIPgetVars(scip);
1357  nvars = SCIPgetNVars(scip);
1358 
1360  assert(*problem != NULL);
1361 
1362  SCIP_CALL( SCIPallocBlockMemoryArray(scip, &(*problem)->components, ncomponents) );
1363 
1364  /* create a priority queue for the components: we need exactly ncomponents slots in the queue so it should never be
1365  * resized
1366  */
1367  SCIP_CALL( SCIPpqueueCreate(&(*problem)->compqueue, ncomponents, 1.2, componentSort, NULL) );
1368 
1369  (*problem)->scip = scip;
1370  (*problem)->lowerbound = fixedvarsobjsum;
1371  (*problem)->fixedvarsobjsum = fixedvarsobjsum;
1372  (*problem)->ncomponents = 0;
1373  (*problem)->componentssize = ncomponents;
1374  (*problem)->nlowerboundinf = ncomponents;
1375  (*problem)->nfeascomps = 0;
1376  (*problem)->nsolvedcomps = 0;
1377 
1378  if( SCIPgetDepth(scip) == 0 )
1379  (void) SCIPsnprintf(name, SCIP_MAXSTRLEN, "%s", SCIPgetProbName(scip));
1380  else
1382 
1383  SCIP_CALL( SCIPduplicateMemoryArray(scip, &(*problem)->name, name, strlen(name)+1) );
1384 
1385  SCIP_CALL( SCIPcreateSol(scip, &(*problem)->bestsol, NULL) );
1386 
1387  for( v = 0; v < nvars; v++ )
1388  {
1389  if( SCIPisFeasEQ(scip, SCIPvarGetLbLocal(vars[v]), SCIPvarGetUbLocal(vars[v])) )
1390  {
1391  SCIP_CALL( SCIPsetSolVal(scip, (*problem)->bestsol, vars[v],
1392  (SCIPvarGetUbLocal(vars[v]) + SCIPvarGetLbLocal(vars[v]))/2) );
1393  }
1394  }
1395 
1396  SCIPdebugMsg(scip, "initialized problem <%s>\n", (*problem)->name);
1397 
1398  return SCIP_OKAY;
1399 }
1400 
1401 /** free subproblem structure */
1402 static
1404  PROBLEM** problem /**< pointer to problem to free */
1405  )
1406 {
1407  SCIP* scip;
1408  int c;
1409 
1410  assert(problem != NULL);
1411  assert(*problem != NULL);
1412 
1413  scip = (*problem)->scip;
1414  assert(scip != NULL);
1415 
1416  /* free best solution */
1417  if( (*problem)->bestsol != NULL )
1418  {
1419  SCIP_CALL( SCIPfreeSol(scip, &(*problem)->bestsol) );
1420  }
1421 
1422  /* free all components */
1423  for( c = (*problem)->ncomponents - 1; c >= 0; --c )
1424  {
1425  SCIP_CALL( freeComponent(&(*problem)->components[c]) );
1426  }
1427  if( (*problem)->components != NULL )
1428  {
1429  SCIPfreeBlockMemoryArray(scip, &(*problem)->components, (*problem)->componentssize);
1430  }
1431 
1432  /* free priority queue */
1433  SCIPpqueueFree(&(*problem)->compqueue);
1434 
1435  /* free problem name */
1436  SCIPfreeMemoryArray(scip, &(*problem)->name);
1437 
1438  /* free PROBLEM struct and set the pointer to NULL */
1440  *problem = NULL;
1441 
1442  return SCIP_OKAY;
1443 }
1444 
1445 /** creates and captures a components constraint */
1446 static
1448  SCIP* scip, /**< SCIP data structure */
1449  SCIP_CONS** cons, /**< pointer to hold the created constraint */
1450  const char* name, /**< name of constraint */
1451  PROBLEM* problem /**< problem to be stored in the constraint */
1452  )
1453 {
1454  SCIP_CONSHDLR* conshdlr;
1455 
1456  /* find the components constraint handler */
1457  conshdlr = SCIPfindConshdlr(scip, CONSHDLR_NAME);
1458  if( conshdlr == NULL )
1459  {
1460  SCIPerrorMessage("components constraint handler not found\n");
1461  return SCIP_PLUGINNOTFOUND;
1462  }
1463 
1464  /* create constraint */
1465  SCIP_CALL( SCIPcreateCons(scip, cons, name, conshdlr, (SCIP_CONSDATA*)problem,
1466  FALSE, FALSE, FALSE, FALSE, TRUE,
1467  TRUE, FALSE, FALSE, FALSE, TRUE) );
1468 
1469  return SCIP_OKAY;
1470 }
1471 
1472 
1473 /** sort the components by size and sort vars and conss arrays by component numbers */
1474 static
1476  SCIP* scip, /**< SCIP data structure */
1477  SCIP_CONSHDLRDATA* conshdlrdata, /**< constraint handler data */
1478  SCIP_DIGRAPH* digraph, /**< directed graph */
1479  SCIP_CONS** conss, /**< constraints */
1480  SCIP_VAR** vars, /**< variables */
1481  int* varcomponent, /**< component numbers for the variables */
1482  int* conscomponent, /**< array to store component numbers for the constraints */
1483  int nconss, /**< number of constraints */
1484  int nvars, /**< number of variables */
1485  int* firstvaridxpercons, /**< array with index of first variable in vars array for each constraint */
1486  int* ncompsminsize, /**< pointer to store the number of components not exceeding the minimum size */
1487  int* ncompsmaxsize /**< pointer to store the number of components not exceeding the maximum size */
1488  )
1489 {
1490  SCIP_Real* compsize;
1491  int* permu;
1492  int ncomponents;
1493  int nbinvars;
1494  int nintvars;
1495  int ndiscvars;
1496  int ncontvars;
1497  int minsize;
1498  int v;
1499  int c;
1500 
1501  assert(scip != NULL);
1502  assert(conshdlrdata != NULL);
1503  assert(digraph != NULL);
1504  assert(conss != NULL);
1505  assert(vars != NULL);
1506  assert(firstvaridxpercons != NULL);
1507 
1508  /* compute minimum size of components to solve individually */
1509  minsize = getMinsize(scip, conshdlrdata);
1510 
1511  ncomponents = SCIPdigraphGetNComponents(digraph);
1512  *ncompsminsize = 0;
1513  *ncompsmaxsize = 0;
1514 
1515  /* We want to sort the components in increasing complexity (number of discrete variables,
1516  * integer weighted with factor intfactor, continuous used as tie-breaker).
1517  * Therefore, we now get the variables for each component, count the different variable types
1518  * and compute a size as described above. Then, we rename the components
1519  * such that for i < j, component i has no higher complexity than component j.
1520  */
1521  SCIP_CALL( SCIPallocBufferArray(scip, &compsize, ncomponents) );
1522  SCIP_CALL( SCIPallocBufferArray(scip, &permu, ncomponents) );
1523 
1524  /* get number of variables in the components */
1525  for( c = 0; c < ncomponents; ++c )
1526  {
1527  int* cvars;
1528  int ncvars;
1529 
1530  SCIPdigraphGetComponent(digraph, c, &cvars, &ncvars);
1531  permu[c] = c;
1532  nbinvars = 0;
1533  nintvars = 0;
1534 
1535  for( v = 0; v < ncvars; ++v )
1536  {
1537  /* check whether variable is of binary or integer type */
1538  if( SCIPvarGetType(vars[cvars[v]]) == SCIP_VARTYPE_BINARY )
1539  nbinvars++;
1540  else if( SCIPvarGetType(vars[cvars[v]]) == SCIP_VARTYPE_INTEGER )
1541  nintvars++;
1542  }
1543  ncontvars = ncvars - nintvars - nbinvars;
1544  ndiscvars = (int)(nbinvars + conshdlrdata->intfactor * nintvars);
1545  compsize[c] = ((1000.0 * ndiscvars + (950.0 * ncontvars)/nvars));
1546 
1547  /* component fulfills the maxsize requirement */
1548  if( ndiscvars <= conshdlrdata->maxintvars )
1549  ++(*ncompsmaxsize);
1550 
1551  /* component fulfills the minsize requirement */
1552  if( ncvars >= minsize )
1553  ++(*ncompsminsize);
1554  }
1555 
1556  /* get permutation of component numbers such that the size of the components is increasing */
1557  SCIPsortRealInt(compsize, permu, ncomponents);
1558 
1559  /* now, we need the reverse direction, i.e., for each component number, we store its new number
1560  * such that the components are sorted; for this, we abuse the conscomponent array
1561  */
1562  for( c = 0; c < ncomponents; ++c )
1563  conscomponent[permu[c]] = c;
1564 
1565  /* for each variable, replace the old component number by the new one */
1566  for( c = 0; c < nvars; ++c )
1567  varcomponent[c] = conscomponent[varcomponent[c]];
1568 
1569  SCIPfreeBufferArray(scip, &permu);
1570  SCIPfreeBufferArray(scip, &compsize);
1571 
1572  /* do the mapping from calculated components per variable to corresponding
1573  * constraints and sort the component-arrays for faster finding the
1574  * actual variables and constraints belonging to one component
1575  */
1576  for( c = 0; c < nconss; c++ )
1577  conscomponent[c] = (firstvaridxpercons[c] == -1 ? -1 : varcomponent[firstvaridxpercons[c]]);
1578 
1579  SCIPsortIntPtr(varcomponent, (void**)vars, nvars);
1580  SCIPsortIntPtr(conscomponent, (void**)conss, nconss);
1581 
1582  return SCIP_OKAY;
1583 }
1584 
1585 
1586 
1587 /** create PROBLEM structure for the current node and split it into components */
1588 static
1590  SCIP* scip, /**< SCIP data structure */
1591  SCIP_CONSHDLRDATA* conshdlrdata, /**< constraint handler data */
1592  SCIP_Real fixedvarsobjsum, /**< objective contribution of all locally fixed variables */
1593  SCIP_VAR** sortedvars, /**< array of unfixed variables sorted by components */
1594  SCIP_CONS** sortedconss, /**< array of (checked) constraints sorted by components */
1595  int* compstartsvars, /**< start points of components in sortedvars array */
1596  int* compstartsconss, /**< start points of components in sortedconss array */
1597  int ncomponents, /**< number of components */
1598  PROBLEM** problem /**< pointer to store problem structure */
1599  )
1600 {
1601  COMPONENT* component;
1602  SCIP_HASHMAP* consmap;
1603  SCIP_HASHMAP* varmap;
1604  SCIP_VAR** compvars;
1605  SCIP_CONS** compconss;
1606  SCIP_Bool success = TRUE;
1607  int nfixedvars = SCIPgetNVars(scip) - compstartsvars[ncomponents];
1608  int ncompconss;
1609  int comp;
1610 
1611  /* init subproblem data structure */
1612  SCIP_CALL( initProblem(scip, problem, fixedvarsobjsum, ncomponents) );
1613  assert((*problem)->components != NULL);
1614 
1615  /* hashmap mapping from original constraints to constraints in the sub-SCIPs (for performance reasons) */
1616  SCIP_CALL( SCIPhashmapCreate(&consmap, SCIPblkmem(scip), compstartsconss[ncomponents]) );
1617 
1618  /* loop over all components */
1619  for( comp = 0; comp < ncomponents; comp++ )
1620  {
1622  assert((*problem)->ncomponents == comp+1);
1623 
1624  component = &(*problem)->components[comp];
1625 
1626  /* get component variables and store them in component structure */
1627  compvars = &(sortedvars[compstartsvars[comp]]);
1628  component->nvars = compstartsvars[comp + 1 ] - compstartsvars[comp];
1629  SCIP_CALL( SCIPduplicateBlockMemoryArray(scip, &component->vars, compvars, component->nvars) );
1630  SCIP_CALL( SCIPallocBlockMemoryArray(scip, &component->subvars, component->nvars) );
1631  SCIP_CALL( SCIPhashmapCreate(&varmap, SCIPblkmem(scip), component->nvars + nfixedvars) );
1632 
1633  /* get component constraints */
1634  compconss = &(sortedconss[compstartsconss[comp]]);
1635  ncompconss = compstartsconss[comp + 1] - compstartsconss[comp];
1636 
1637 #ifdef DETAILED_OUTPUT
1638  /* print details about the component including its size */
1639  if( component->nvars > 1 && ncompconss > 1 )
1640  {
1641  int nbinvars = 0;
1642  int nintvars = 0;
1643  int ncontvars = 0;
1644  int i;
1645 
1646  for( i = 0; i < component->nvars; ++i )
1647  {
1648  if( SCIPvarGetType(compvars[i]) == SCIP_VARTYPE_BINARY )
1649  ++nbinvars;
1650  else if( SCIPvarGetType(compvars[i]) == SCIP_VARTYPE_INTEGER )
1651  ++nintvars;
1652  else
1653  ++ncontvars;
1654  }
1655  SCIPdebugMsg(scip, "component %d at node %lld, depth %d (%d): %d vars (%d bin, %d int, %d cont), %d conss\n",
1656  comp, SCIPnodeGetNumber(SCIPgetCurrentNode(scip)), SCIPgetDepth(scip), SCIPgetDepth(scip) + conshdlrdata->subscipdepth,
1657  component->nvars, nbinvars, nintvars, ncontvars, ncompconss);
1658  }
1659 #endif
1660  assert(ncompconss > 0 || component->nvars == 1);
1661 
1662  SCIPdebugMsg(scip, "build sub-SCIP for component %d of problem <%s>: %d vars, %d conss\n",
1663  component->number, (*problem)->name, component->nvars, ncompconss);
1664 
1665 #ifndef NDEBUG
1666  {
1667  int i;
1668  for( i = 0; i < component->nvars; ++i )
1669  assert(SCIPvarIsActive(component->vars[i]));
1670  }
1671 #endif
1672 
1673  /* build subscip for component */
1674  SCIP_CALL( componentCreateSubscip(component, conshdlrdata, varmap, consmap, compconss, ncompconss, &success) );
1675 
1676  if( success )
1677  {
1678  SCIP_CALL( componentSetupWorkingSol(component, varmap) );
1679 
1680  /* add component to the priority queue of the problem structure */
1681  SCIP_CALL( SCIPpqueueInsert((*problem)->compqueue, component) );
1682  }
1683 
1684  SCIPhashmapFree(&varmap);
1685 
1686  if( !success )
1687  break;
1688  }
1689 
1690  SCIPhashmapFree(&consmap);
1691 
1692  if( !success )
1693  {
1694  /* free subproblem data structure since not all component could be copied */
1696  }
1697 
1698  return SCIP_OKAY;
1699 }
1700 
1701 /** continue solving a problem */
1702 static
1704  PROBLEM* problem, /**< problem structure */
1705  SCIP_RESULT* result /**< result pointer for the problem solve */
1706  )
1707 {
1708  COMPONENT* component;
1709  SCIP_RESULT subscipresult;
1710 
1711  assert(problem != NULL);
1712 
1713  *result = SCIP_SUCCESS;
1714 
1715  component = (COMPONENT*)SCIPpqueueRemove(problem->compqueue);
1716 
1717  /* continue solving the component */
1718  SCIP_CALL( solveComponent(component, SCIPpqueueNElems(problem->compqueue) == 0, &subscipresult) );
1719 
1720  /* if infeasibility or unboundedness was detected, return this */
1721  if( subscipresult == SCIP_CUTOFF || subscipresult == SCIP_UNBOUNDED )
1722  {
1723  *result = subscipresult;
1724  }
1725  /* the component was not solved to optimality, so we need to re-insert it in the components queue */
1726  else if( !component->solved )
1727  {
1728  SCIP_CALL( SCIPpqueueInsert(problem->compqueue, component) );
1729  *result = SCIP_DELAYNODE;
1730  }
1731  /* no unsolved components are left, so this problem has be completely evaluated and the node can be pruned */
1732  else if( SCIPpqueueNElems(problem->compqueue) == 0 )
1733  *result = SCIP_CUTOFF;
1734  /* there are some unsolved components left, so we delay this node */
1735  else
1736  *result = SCIP_DELAYNODE;
1737 
1738  return SCIP_OKAY;
1739 }
1740 
1741 /*
1742  * Local methods
1743  */
1744 
1745 /** loop over constraints, get active variables and fill directed graph */
1746 static
1748  SCIP* scip, /**< SCIP data structure */
1749  SCIP_DIGRAPH* digraph, /**< directed graph */
1750  SCIP_CONS** conss, /**< constraints */
1751  int nconss, /**< number of constraints */
1752  int* unfixedvarpos, /**< mapping from variable problem index to unfixed var index */
1753  int nunfixedvars, /**< number of unfixed variables */
1754  int* firstvaridxpercons, /**< array to store for each constraint the index in the local vars array
1755  * of the first variable of the constraint */
1756  SCIP_Bool* success /**< flag indicating successful directed graph filling */
1757  )
1758 {
1759  SCIP_VAR** consvars;
1760  int requiredsize;
1761  int nconsvars;
1762  int nvars;
1763  int idx1;
1764  int idx2;
1765  int c;
1766  int v;
1767 
1768  assert(scip != NULL);
1769  assert(digraph != NULL);
1770  assert(conss != NULL);
1771  assert(firstvaridxpercons != NULL);
1772  assert(success != NULL);
1773 
1774  *success = TRUE;
1775 
1776  nconsvars = 0;
1777  requiredsize = 0;
1778  nvars = SCIPgetNVars(scip);
1779 
1780  /* allocate buffer for storing active variables per constraint; size = nvars ensures that it will be big enough */
1781  SCIP_CALL( SCIPallocBufferArray(scip, &consvars, nvars) );
1782 
1783  for( c = 0; c < nconss; ++c )
1784  {
1785  /* check for reached timelimit */
1786  if( (c % 1000 == 0) && SCIPisStopped(scip) )
1787  {
1788  *success = FALSE;
1789  break;
1790  }
1791 
1792  /* get number of variables for this constraint */
1793  SCIP_CALL( SCIPgetConsNVars(scip, conss[c], &nconsvars, success) );
1794 
1795  if( !(*success) )
1796  break;
1797 
1798  /* reallocate consvars array, if needed */
1799  if( nconsvars > nvars )
1800  {
1801  nvars = nconsvars;
1802  SCIP_CALL( SCIPreallocBufferArray(scip, &consvars, nvars) );
1803  }
1804 
1805 #ifndef NDEBUG
1806  /* clearing variables array to check for consistency */
1807  if( nconsvars == nvars )
1808  {
1809  BMSclearMemoryArray(consvars, nconsvars);
1810  }
1811  else
1812  {
1813  assert(nconsvars < nvars);
1814  BMSclearMemoryArray(consvars, nconsvars + 1);
1815  }
1816 #endif
1817 
1818  /* get variables for this constraint */
1819  SCIP_CALL( SCIPgetConsVars(scip, conss[c], consvars, nvars, success) );
1820 
1821  if( !(*success) )
1822  {
1823 #ifndef NDEBUG
1824  /* it looks strange if returning the number of variables was successful but not returning the variables */
1825  SCIPwarningMessage(scip, "constraint <%s> returned number of variables but returning variables failed\n", SCIPconsGetName(conss[c]));
1826 #endif
1827  break;
1828  }
1829 
1830 #ifndef NDEBUG
1831  /* check if returned variables are consistent with the number of variables that were returned */
1832  for( v = nconsvars - 1; v >= 0; --v )
1833  assert(consvars[v] != NULL);
1834  if( nconsvars < nvars )
1835  assert(consvars[nconsvars] == NULL);
1836 #endif
1837 
1838  /* transform given variables to active variables */
1839  SCIP_CALL( SCIPgetActiveVars(scip, consvars, &nconsvars, nvars, &requiredsize) );
1840  assert(requiredsize <= nvars);
1841 
1842  firstvaridxpercons[c] = -1;
1843 
1844  /* store the index of the first unfixed variable and add edges to the directed graph */
1845  if( nconsvars > 0 )
1846  {
1847  v = 0;
1848  idx1 = -1;
1849 
1850  /* go through variables until the first unfixed one is reached (which has unfixedvarpos >= 0) */
1851  while( idx1 == -1 && v < nconsvars )
1852  {
1853  idx1 = SCIPvarGetProbindex(consvars[v]);
1854  assert(idx1 >= 0);
1855  idx1 = unfixedvarpos[idx1];
1856  assert(idx1 < nunfixedvars);
1857  ++v;
1858  }
1859 
1860  if( idx1 >= 0 )
1861  {
1862  /* save index of the first variable for later component assignment */
1863  firstvaridxpercons[c] = idx1;
1864 
1865  /* create sparse directed graph; sparse means to add only those edges necessary for component calculation,
1866  * i.e., add edges from the first variable to all others
1867  */
1868  for(; v < nconsvars; ++v )
1869  {
1870  idx2 = SCIPvarGetProbindex(consvars[v]);
1871  assert(idx2 >= 0);
1872  idx2 = unfixedvarpos[idx2];
1873  assert(idx2 < nunfixedvars);
1874 
1875  /* variable is fixed */
1876  if( idx2 < 0 )
1877  continue;
1878 
1879  /* we add only one directed edge, because the other direction is automatically added for component computation */
1880  SCIP_CALL( SCIPdigraphAddArc(digraph, idx1, idx2, NULL) );
1881  }
1882  }
1883  }
1884  }
1885 
1886  SCIPfreeBufferArray(scip, &consvars);
1887 
1888  return SCIP_OKAY;
1889 }
1890 
1891 /** search for components in the problem */
1892 static
1894  SCIP* scip, /**< SCIP main data structure */
1895  SCIP_CONSHDLRDATA* conshdlrdata, /**< the components constraint handler data */
1896  SCIP_Real* fixedvarsobjsum, /**< objective contribution of all locally fixed variables, or NULL if
1897  * fixed variables should not be disregarded */
1898  SCIP_VAR** sortedvars, /**< array to store variables sorted by components, should have enough size
1899  * for all variables */
1900  SCIP_CONS** sortedconss, /**< array to store (checked) constraints sorted by components, should have
1901  * enough size for all constraints */
1902  int* compstartsvars, /**< start points of components in sortedvars array */
1903  int* compstartsconss, /**< start points of components in sortedconss array */
1904  int* nsortedvars, /**< pointer to store the number of variables belonging to any component */
1905  int* nsortedconss, /**< pointer to store the number of (checked) constraints in components */
1906  int* ncomponents, /**< pointer to store the number of components */
1907  int* ncompsminsize, /**< pointer to store the number of components not exceeding the minimum size */
1908  int* ncompsmaxsize /**< pointer to store the number of components not exceeding the maximum size */
1909 
1910  )
1911 {
1912  SCIP_CONS** tmpconss;
1913  SCIP_VAR** vars;
1914  SCIP_Bool success;
1915  int ntmpconss;
1916  int nvars;
1917  int c;
1918 
1919  assert(scip != NULL);
1920  assert(conshdlrdata != NULL);
1921  assert(sortedvars != NULL);
1922  assert(sortedconss != NULL);
1923  assert(compstartsvars != NULL);
1924  assert(compstartsconss != NULL);
1925  assert(nsortedvars != NULL);
1926  assert(nsortedconss != NULL);
1927  assert(ncomponents != NULL);
1928  assert(ncompsminsize != NULL);
1929  assert(ncompsmaxsize != NULL);
1930 
1931  vars = SCIPgetVars(scip);
1932  nvars = SCIPgetNVars(scip);
1933 
1934  if( fixedvarsobjsum != NULL )
1935  *fixedvarsobjsum = 0.0;
1936 
1937  *ncomponents = 0;
1938  *ncompsminsize = 0;
1939  *ncompsmaxsize = 0;
1940 
1941  /* collect checked constraints for component detection */
1942  ntmpconss = SCIPgetNConss(scip);
1943  tmpconss = SCIPgetConss(scip);
1944  (*nsortedconss) = 0;
1945  for( c = 0; c < ntmpconss; c++ )
1946  {
1947  sortedconss[(*nsortedconss)] = tmpconss[c];
1948  (*nsortedconss)++;
1949  }
1950 
1951  if( nvars > 1 && *nsortedconss > 1 )
1952  {
1953  int* unfixedvarpos;
1954  int* firstvaridxpercons;
1955  int* varlocks;
1956  int nunfixedvars = 0;
1957  int v;
1958 
1959  /* arrays for storing the first variable in each constraint (for later component assignment), the number of
1960  * variable locks, and the positions in the sortedvars array for all unfixed variables
1961  */
1962  SCIP_CALL( SCIPallocBufferArray(scip, &firstvaridxpercons, *nsortedconss) );
1963  SCIP_CALL( SCIPallocBufferArray(scip, &varlocks, nvars) );
1964  SCIP_CALL( SCIPallocBufferArray(scip, &unfixedvarpos, nvars) );
1965 
1966  /* count number of varlocks for each variable (up + down locks) and multiply it by 2;
1967  * that value is used as an estimate of the number of arcs incident to the variable's node in the digraph
1968  * to be safe, we double this value
1969  */
1970  for( v = 0; v < nvars; ++v )
1971  {
1972  /* variable is not fixed or we do not want to disregard fixed variables */
1973  if( (fixedvarsobjsum == NULL) || SCIPisLT(scip, SCIPvarGetLbLocal(vars[v]), SCIPvarGetUbLocal(vars[v])) )
1974  {
1975  assert(nunfixedvars <= v);
1976  sortedvars[nunfixedvars] = vars[v];
1977  varlocks[nunfixedvars] = 4 * (SCIPvarGetNLocksDownType(vars[v], SCIP_LOCKTYPE_MODEL)
1979  unfixedvarpos[v] = nunfixedvars;
1980  ++nunfixedvars;
1981  }
1982  /* variable is fixed; update the objective sum of all fixed variables */
1983  else
1984  {
1985  unfixedvarpos[v] = -1;
1986  (*fixedvarsobjsum) += SCIPvarGetObj(vars[v]) * SCIPvarGetLbLocal(vars[v]);
1987  }
1988  }
1989  *nsortedvars = nunfixedvars;
1990 
1991  if( nunfixedvars > 0 )
1992  {
1993  SCIP_DIGRAPH* digraph;
1994 
1995  /* create and fill directed graph */
1996  SCIP_CALL( SCIPcreateDigraph(scip, &digraph, nunfixedvars) );
1997  SCIP_CALL( SCIPdigraphSetSizes(digraph, varlocks) );
1998  SCIP_CALL( fillDigraph(scip, digraph, sortedconss, *nsortedconss, unfixedvarpos, nunfixedvars, firstvaridxpercons, &success) );
1999 
2000  if( success )
2001  {
2002  int* varcomponent;
2003  int* conscomponent;
2004 
2005  SCIP_CALL( SCIPallocBufferArray(scip, &varcomponent, nunfixedvars) );
2006  SCIP_CALL( SCIPallocBufferArray(scip, &conscomponent, MAX(nunfixedvars,*nsortedconss)) );
2007 
2008  /* compute independent components */
2009  SCIP_CALL( SCIPdigraphComputeUndirectedComponents(digraph, 1, varcomponent, ncomponents) );
2010 
2011  if( *ncomponents > 1 )
2012  {
2013  int nconss = *nsortedconss;
2014  int i;
2015 
2016  nvars = *nsortedvars;
2017 
2019  "cons components found %d undirected components at node %lld, depth %d (%d)\n",
2020  *ncomponents, SCIPnodeGetNumber(SCIPgetCurrentNode(scip)), SCIPgetDepth(scip), SCIPgetDepth(scip) + conshdlrdata->subscipdepth);
2021 
2022  /* sort components by size and sort variables and constraints by component number */
2023  SCIP_CALL( sortComponents(scip, conshdlrdata, digraph, sortedconss, sortedvars, varcomponent, conscomponent, nconss, *nsortedvars,
2024  firstvaridxpercons, ncompsminsize, ncompsmaxsize) );
2025 
2026  /* determine start indices of components in sortedvars and sortedconss array */
2027  i = 0;
2028 
2029  while( i < nconss && conscomponent[i] == -1 )
2030  ++i;
2031 
2032  for( c = 0; c < *ncomponents + 1; ++c )
2033  {
2034  assert(i == nconss || conscomponent[i] >= c);
2035 
2036  compstartsconss[c] = i;
2037 
2038  while( i < nconss && conscomponent[i] == c )
2039  ++i;
2040  }
2041 
2042  for( c = 0, i = 0; c < *ncomponents + 1; ++c )
2043  {
2044  assert(i == nvars || varcomponent[i] >= c);
2045 
2046  compstartsvars[c] = i;
2047 
2048  while( i < nvars && varcomponent[i] == c )
2049  ++i;
2050  }
2051 
2052 #ifndef NDEBUG
2053  for( c = 0; c < *ncomponents; ++c )
2054  {
2055  for( i = compstartsconss[c]; i < compstartsconss[c+1]; ++i )
2056  assert(conscomponent[i] == c);
2057  for( i = compstartsvars[c]; i < compstartsvars[c+1]; ++i )
2058  assert(varcomponent[i] == c);
2059  }
2060 #endif
2061  }
2062 
2063  SCIPfreeBufferArray(scip, &conscomponent);
2064  SCIPfreeBufferArray(scip, &varcomponent);
2065  }
2066 
2067  SCIPdigraphFree(&digraph);
2068  }
2069 
2070  SCIPfreeBufferArray(scip, &unfixedvarpos);
2071  SCIPfreeBufferArray(scip, &varlocks);
2072  SCIPfreeBufferArray(scip, &firstvaridxpercons);
2073  }
2074 
2075  return SCIP_OKAY;
2076 }
2077 
2078 
2079 /*
2080  * Callback methods of constraint handler
2081  */
2082 
2083 /** copy method for constraint handler plugins (called when SCIP copies plugins) */
2084 static
2085 SCIP_DECL_CONSHDLRCOPY(conshdlrCopyComponents)
2086 { /*lint --e{715}*/
2087  assert(scip != NULL);
2088  assert(conshdlr != NULL);
2089  assert(strcmp(SCIPconshdlrGetName(conshdlr), CONSHDLR_NAME) == 0);
2090 
2091  /* call inclusion method of constraint handler */
2093 
2094  *valid = TRUE;
2095 
2096  return SCIP_OKAY;
2097 }
2098 
2099 /** destructor of constraint handler to free user data (called when SCIP is exiting) */
2100 static
2101 SCIP_DECL_CONSFREE(conshdlrFreeComponents)
2102 { /*lint --e{715}*/
2103  SCIP_CONSHDLRDATA* conshdlrdata;
2104 
2105  /* free constraint handler data */
2106  conshdlrdata = SCIPconshdlrGetData(conshdlr);
2107  assert(conshdlrdata != NULL);
2108 
2109  SCIPfreeBlockMemory(scip, &conshdlrdata);
2110  SCIPconshdlrSetData(conshdlr, NULL);
2111 
2112  return SCIP_OKAY;
2113 }
2114 
2115 /** domain propagation method of constraint handler */
2116 static
2117 SCIP_DECL_CONSPROP(consPropComponents)
2118 { /*lint --e{715}*/
2119  PROBLEM* problem;
2120  SCIP_CONSHDLRDATA* conshdlrdata;
2121  SCIP_Longint nodelimit;
2122 
2123  assert(conshdlr != NULL);
2124  assert(strcmp(SCIPconshdlrGetName(conshdlr), CONSHDLR_NAME) == 0);
2125  assert(result != NULL);
2126  assert(SCIPconshdlrGetNActiveConss(conshdlr) >= 0);
2127  assert(SCIPconshdlrGetNActiveConss(conshdlr) <= 1);
2128 
2129  conshdlrdata = SCIPconshdlrGetData(conshdlr);
2130  assert(conshdlrdata != NULL);
2131 
2132  *result = SCIP_DIDNOTRUN;
2133 
2134  /* do not try to detect independent components if the depth is too high */
2135  if( SCIPgetDepth(scip) + conshdlrdata->subscipdepth > conshdlrdata->maxdepth
2136  && SCIPconshdlrGetNActiveConss(conshdlr) == 0 )
2137  return SCIP_OKAY;
2138 
2139  /* don't run in probing or in repropagation */
2140  if( SCIPinProbing(scip) || SCIPinRepropagation(scip) )
2141  return SCIP_OKAY;
2142 
2143  /* do not run, if not all variables are explicitly known */
2144  if( SCIPgetNActivePricers(scip) > 0 )
2145  return SCIP_OKAY;
2146 
2147  /* we do not want to run, if there are no variables left */
2148  if( SCIPgetNVars(scip) == 0 )
2149  return SCIP_OKAY;
2150 
2151  /* check for a reached timelimit */
2152  if( SCIPisStopped(scip) )
2153  return SCIP_OKAY;
2154 
2155  /* the components constraint handler does kind of dual reductions */
2156  if( !SCIPallowStrongDualReds(scip) || !SCIPallowWeakDualReds(scip) )
2157  return SCIP_OKAY;
2158 
2159  problem = NULL;
2160  *result = SCIP_DIDNOTFIND;
2161 
2162  /* the current node already has a components constraint storing a problem split into individual components */
2163  if( SCIPconshdlrGetNActiveConss(conshdlr) >= 1 )
2164  {
2165  assert(SCIPconshdlrGetNActiveConss(conshdlr) == 1);
2166 
2167  problem = (PROBLEM*)SCIPconsGetData(SCIPconshdlrGetConss(conshdlr)[0]);
2168  }
2169  /* no components constraint at the current node, search for components */
2170  else
2171  {
2173  SCIP_VAR** sortedvars;
2174  SCIP_CONS** sortedconss;
2175  int* compstartsvars;
2176  int* compstartsconss;
2177  int nsortedvars;
2178  int nsortedconss;
2179  int ncomponents;
2180  int ncompsminsize;
2181  int ncompsmaxsize;
2182 
2183  assert(SCIPconshdlrGetNActiveConss(conshdlr) == 0);
2184 
2185  /* allocate memory for sorted components */
2186  SCIP_CALL( SCIPallocBufferArray(scip, &sortedvars, SCIPgetNVars(scip)) );
2187  SCIP_CALL( SCIPallocBufferArray(scip, &sortedconss, SCIPgetNConss(scip)) );
2188  SCIP_CALL( SCIPallocBufferArray(scip, &compstartsvars, SCIPgetNVars(scip) + 1) );
2189  SCIP_CALL( SCIPallocBufferArray(scip, &compstartsconss, SCIPgetNVars(scip) + 1) );
2190 
2191  /* search for components */
2192  SCIP_CALL( findComponents(scip, conshdlrdata, &fixedvarsobjsum, sortedvars, sortedconss, compstartsvars,
2193  compstartsconss, &nsortedvars, &nsortedconss, &ncomponents, &ncompsminsize, &ncompsmaxsize) );
2194 
2195  if( ncompsminsize > 1 )
2196  {
2197  SCIP_CONS* cons;
2198 
2199  SCIPdebugMsg(scip, "found %d components (%d fulfilling the minsize requirement) at node %lld at depth %d (%d)\n",
2200  ncomponents, ncompsminsize, SCIPnodeGetNumber(SCIPgetCurrentNode(scip)), SCIPgetDepth(scip),
2201  SCIPgetDepth(scip) + conshdlrdata->subscipdepth);
2202 
2203  /* if there are components with size smaller than the limit, we merge them with the smallest component */
2204  if( ncomponents > ncompsminsize )
2205  {
2206  int minsize;
2207  int size;
2208  int c;
2209  int m = 0;
2210 
2211  /* compute minimum size of components to solve individually */
2212  minsize = getMinsize(scip, conshdlrdata);
2213 
2214  for( c = 0; c < ncomponents; ++c )
2215  {
2216  size = compstartsvars[c+1] - compstartsvars[c];
2217 
2218  if( size >= minsize )
2219  {
2220  ++m;
2221  compstartsvars[m] = compstartsvars[c+1];
2222  compstartsconss[m] = compstartsconss[c+1];
2223  }
2224  /* the last component is too small */
2225  else if( c == ncomponents - 1 )
2226  {
2227  assert(m == ncompsminsize);
2228  compstartsvars[m] = compstartsvars[c+1];
2229  compstartsconss[m] = compstartsconss[c+1];
2230  }
2231  }
2232  assert(m == ncompsminsize);
2233  assert(compstartsvars[m] == nsortedvars);
2234  assert(compstartsconss[m] == nsortedconss);
2235 
2236  ncomponents = m;
2237  }
2238 
2239  SCIP_CALL( createAndSplitProblem(scip, conshdlrdata, fixedvarsobjsum, sortedvars, sortedconss, compstartsvars,
2240  compstartsconss, ncomponents, &problem) );
2241 
2242  /* if the problem is not NULL, copying worked fine */
2243  if( problem != NULL )
2244  {
2245  SCIP_CALL( createConsComponents(scip, &cons, problem->name, problem) );
2246  SCIP_CALL( SCIPaddConsNode(scip, SCIPgetCurrentNode(scip), cons, NULL) );
2247  SCIP_CALL( SCIPreleaseCons(scip, &cons) );
2248  }
2249  }
2250 
2251  SCIPfreeBufferArray(scip, &compstartsconss);
2252  SCIPfreeBufferArray(scip, &compstartsvars);
2253  SCIPfreeBufferArray(scip, &sortedconss);
2254  SCIPfreeBufferArray(scip, &sortedvars);
2255  }
2256 
2257  /* (continue to) solve the problem
2258  *
2259  * If the problem was not solved to optimality yet, the result code is set to SCIP_DELAYNODE, so that after the
2260  * propagation is finished, the node is put back into the queue of open nodes and solving the components of the
2261  * problem will be continued when the node is focused and propagated the next time.
2262  * However, if we are at the root node, we continue solving the problem until it is solved or some limit is reached
2263  * since there are no other nodes to process and we want to avoid calling other propagation methods or heuristics
2264  * again and again
2265  */
2266  SCIP_CALL( SCIPgetLongintParam(scip, "limits/nodes", &nodelimit) );
2267  if( nodelimit == -1 )
2268  nodelimit = SCIP_LONGINT_MAX;
2269 
2270  do
2271  {
2272  if( problem != NULL )
2273  {
2274  SCIP_CALL( solveProblem(problem, result) );
2275  }
2276  } while( *result == SCIP_DELAYNODE && SCIPgetDepth(scip) == 0 && !SCIPisStopped(scip) && SCIPgetNNodes(scip) < nodelimit);
2277 
2278  return SCIP_OKAY;
2279 }
2280 
2281 /** presolving method of constraint handler */
2282 static
2283 SCIP_DECL_CONSPRESOL(consPresolComponents)
2284 { /*lint --e{715}*/
2285  SCIP_CONSHDLRDATA* conshdlrdata;
2286  SCIP_VAR** sortedvars;
2287  SCIP_CONS** sortedconss;
2288  int* compstartsvars;
2289  int* compstartsconss;
2290  int nsortedvars;
2291  int nsortedconss;
2292  int ncomponents;
2293  int ncompsminsize;
2294  int ncompsmaxsize;
2295  int nvars;
2296 
2297  assert(conshdlr != NULL);
2298  assert(strcmp(SCIPconshdlrGetName(conshdlr), CONSHDLR_NAME) == 0);
2299  assert(result != NULL);
2300  assert(SCIPconshdlrGetNActiveConss(conshdlr) >= 0);
2301  assert(SCIPconshdlrGetNActiveConss(conshdlr) <= 1);
2302 
2303  conshdlrdata = SCIPconshdlrGetData(conshdlr);
2304  assert(conshdlrdata != NULL);
2305 
2306  *result = SCIP_DIDNOTRUN;
2307 
2308  if( SCIPgetStage(scip) != SCIP_STAGE_PRESOLVING || SCIPinProbing(scip) )
2309  return SCIP_OKAY;
2310 
2311  /* do not run, if not all variables are explicitly known */
2312  if( SCIPgetNActivePricers(scip) > 0 )
2313  return SCIP_OKAY;
2314 
2315  nvars = SCIPgetNVars(scip);
2316 
2317  /* we do not want to run, if there are no variables left */
2318  if( nvars == 0 )
2319  return SCIP_OKAY;
2320 
2321  /* only call the components presolving, if presolving would be stopped otherwise */
2322  if( !SCIPisPresolveFinished(scip) )
2323  return SCIP_OKAY;
2324 
2325  /* the components constraint handler does kind of dual reductions */
2326  if( !SCIPallowStrongDualReds(scip) || !SCIPallowWeakDualReds(scip) )
2327  return SCIP_OKAY;
2328 
2329  /* check for a reached timelimit */
2330  if( SCIPisStopped(scip) )
2331  return SCIP_OKAY;
2332 
2333  *result = SCIP_DIDNOTFIND;
2334 
2335  assert(SCIPconshdlrGetNActiveConss(conshdlr) == 0);
2336 
2337  /* allocate memory for sorted components */
2338  SCIP_CALL( SCIPallocBufferArray(scip, &sortedvars, SCIPgetNVars(scip)) );
2339  SCIP_CALL( SCIPallocBufferArray(scip, &sortedconss, SCIPgetNConss(scip)) );
2340  SCIP_CALL( SCIPallocBufferArray(scip, &compstartsvars, SCIPgetNVars(scip) + 1) );
2341  SCIP_CALL( SCIPallocBufferArray(scip, &compstartsconss, SCIPgetNVars(scip) + 1) );
2342 
2343  /* search for components */
2344  SCIP_CALL( findComponents(scip, conshdlrdata, NULL, sortedvars, sortedconss, compstartsvars,
2345  compstartsconss, &nsortedvars, &nsortedconss, &ncomponents, &ncompsminsize, &ncompsmaxsize) );
2346 
2347  if( ncompsmaxsize > 0 )
2348  {
2349  char name[SCIP_MAXSTRLEN];
2350  SCIP* subscip;
2351  SCIP_HASHMAP* consmap;
2352  SCIP_HASHMAP* varmap;
2353  SCIP_VAR** compvars;
2354  SCIP_VAR** subvars;
2355  SCIP_CONS** compconss;
2356  SCIP_Bool success;
2357  SCIP_Bool solved;
2358  int nsolved = 0;
2359  int ncompvars;
2360  int ncompconss;
2361  int comp;
2362 
2363  SCIPdebugMsg(scip, "found %d components (%d with small size) during presolving; overall problem size: %d vars (%d int, %d bin, %d cont), %d conss\n",
2364  ncomponents, ncompsmaxsize, SCIPgetNVars(scip), SCIPgetNBinVars(scip), SCIPgetNIntVars(scip), SCIPgetNContVars(scip) + SCIPgetNImplVars(scip), SCIPgetNConss(scip));
2365 
2366  /* build subscip */
2367  SCIP_CALL( createSubscip(scip, conshdlrdata, &subscip) );
2368 
2369  if( subscip == NULL )
2370  goto TERMINATE;
2371 
2372  SCIP_CALL( SCIPsetBoolParam(subscip, "misc/usesmalltables", TRUE) );
2373  SCIP_CALL( SCIPsetIntParam(subscip, "constraints/" CONSHDLR_NAME "/propfreq", -1) );
2374 
2375  /* hashmap mapping from original constraints to constraints in the sub-SCIPs (for performance reasons) */
2376  SCIP_CALL( SCIPhashmapCreate(&consmap, SCIPblkmem(scip), nsortedconss) );
2377 
2378  SCIP_CALL( SCIPallocBufferArray(scip, &subvars, nsortedvars) );
2379 
2380  /* loop over all components */
2381  for( comp = 0; comp < ncompsmaxsize && !SCIPisStopped(scip); comp++ )
2382  {
2383 #ifdef WITH_DEBUG_SOLUTION
2384  if( SCIPgetStage(subscip) > SCIP_STAGE_INIT )
2385  {
2386  SCIP_CALL( SCIPfree(&subscip) );
2387  SCIP_CALL( createSubscip(scip, conshdlrdata, &subscip) );
2388  }
2389 #endif
2390  /* get component variables */
2391  compvars = &(sortedvars[compstartsvars[comp]]);
2392  ncompvars = compstartsvars[comp + 1 ] - compstartsvars[comp];
2393 
2394  /* get component constraints */
2395  compconss = &(sortedconss[compstartsconss[comp]]);
2396  ncompconss = compstartsconss[comp + 1] - compstartsconss[comp];
2397 
2398  /* if we have an unlocked variable, let duality fixing do the job! */
2399  if( ncompconss == 0 )
2400  {
2401  assert(ncompvars == 1);
2402  continue;
2403  }
2404 
2405  SCIP_CALL( SCIPhashmapCreate(&varmap, SCIPblkmem(scip), ncompvars) );
2406 #ifdef DETAILED_OUTPUT
2407  {
2408  int nbinvars = 0;
2409  int nintvars = 0;
2410  int ncontvars = 0;
2411  int i;
2412 
2413  for( i = 0; i < ncompvars; ++i )
2414  {
2415  if( SCIPvarGetType(compvars[i]) == SCIP_VARTYPE_BINARY )
2416  ++nbinvars;
2417  else if( SCIPvarGetType(compvars[i]) == SCIP_VARTYPE_INTEGER )
2418  ++nintvars;
2419  else
2420  ++ncontvars;
2421  }
2422  SCIPdebugMsg(scip, "solve component %d: %d vars (%d bin, %d int, %d cont), %d conss\n",
2423  comp, ncompvars, nbinvars, nintvars, ncontvars, ncompconss);
2424  }
2425 #endif
2426 #ifndef NDEBUG
2427  {
2428  int i;
2429  for( i = 0; i < ncompvars; ++i )
2430  assert(SCIPvarIsActive(compvars[i]));
2431  }
2432 #endif
2433 
2434  /* get name of the original problem and add "comp_nr" */
2435  (void) SCIPsnprintf(name, SCIP_MAXSTRLEN, "%s_comp_%d", SCIPgetProbName(scip), comp);
2436 
2437  SCIP_CALL( copyToSubscip(scip, subscip, name, compvars, subvars,
2438  compconss, varmap, consmap, ncompvars, ncompconss, &success) );
2439 
2440  if( !success )
2441  {
2442  SCIPhashmapFree(&varmap);
2443  continue;
2444  }
2445 
2446  /* set up debug solution */
2447 #ifdef WITH_DEBUG_SOLUTION
2448  if( SCIPdebugSolIsEnabled(scip) )
2449  {
2450  SCIP_SOL* debugsol;
2451  SCIP_Real val;
2452  int i;
2453 
2454  SCIP_CALL( SCIPdebugGetSol(scip, &debugsol) );
2455 
2456  /* set solution values in the debug solution if it is available */
2457  if( debugsol != NULL )
2458  {
2459  SCIPdebugSolEnable(subscip);
2460 
2461  for( i = 0; i < ncompvars; ++i )
2462  {
2463  if( subvars[i] != NULL )
2464  {
2465  SCIP_CALL( SCIPdebugGetSolVal(scip, compvars[i], &val) );
2466  SCIP_CALL( SCIPdebugAddSolVal(subscip, subvars[i], val) );
2467  }
2468  }
2469  }
2470  }
2471 #endif
2472 
2473  /* solve the subproblem and evaluate the result, i.e. apply fixings of variables and remove constraints */
2474  SCIP_CALL( solveAndEvalSubscip(scip, conshdlrdata, subscip, compvars, subvars, compconss,
2475  ncompvars, ncompconss, ndelconss, nfixedvars, nchgbds, result, &solved) );
2476 
2477  /* free variable hash map */
2478  SCIPhashmapFree(&varmap);
2479 
2480  if( solved )
2481  ++nsolved;
2482 
2483  /* if the component is unbounded or infeasible, this holds for the complete problem as well */
2484  if( *result == SCIP_UNBOUNDED || *result == SCIP_CUTOFF )
2485  break;
2486  /* if there is only one component left, let's solve this in the main SCIP */
2487  else if( nsolved == ncomponents - 1 )
2488  break;
2489  }
2490 
2491  SCIPfreeBufferArray(scip, &subvars);
2492  SCIPhashmapFree(&consmap);
2493 
2494  SCIP_CALL( SCIPfree(&subscip) );
2495  }
2496 
2497  TERMINATE:
2498  SCIPfreeBufferArray(scip, &compstartsconss);
2499  SCIPfreeBufferArray(scip, &compstartsvars);
2500  SCIPfreeBufferArray(scip, &sortedconss);
2501  SCIPfreeBufferArray(scip, &sortedvars);
2502 
2503  return SCIP_OKAY;
2504 }
2505 
2506 /** frees specific constraint data */
2507 static
2508 SCIP_DECL_CONSDELETE(consDeleteComponents)
2509 { /*lint --e{715}*/
2510  assert(conshdlr != NULL);
2511  assert(strcmp(SCIPconshdlrGetName(conshdlr), CONSHDLR_NAME) == 0);
2512  assert(consdata != NULL);
2513  assert(*consdata != NULL);
2514 
2515  SCIP_CALL( freeProblem((PROBLEM**) consdata) );
2516 
2517  return SCIP_OKAY;
2518 }
2519 
2520 /** constraint enforcing method of constraint handler for relaxation solutions */
2521 static
2522 SCIP_DECL_CONSENFORELAX(consEnforelaxComponents)
2523 { /*lint --e{715}*/
2524  assert(result != NULL);
2525 
2526  /* no enforcement is performed, but the callback is needed for all constraint handlers with needscons = FALSE */
2527  *result = SCIP_FEASIBLE;
2528 
2529  return SCIP_OKAY;
2530 }
2531 
2532 /** variable rounding lock method of constraint handler */
2533 static
2534 SCIP_DECL_CONSLOCK(consLockComponents)
2535 { /*lint --e{715}*/
2536  return SCIP_OKAY;
2537 }
2538 
2539 #ifndef NDEBUG
2540 /** solving process initialization method of constraint handler (called when branch and bound process is about to begin) */
2541 static
2542 SCIP_DECL_CONSINITSOL(consInitsolComponents)
2543 { /*lint --e{715}*/
2544  assert(nconss == 0);
2545 
2546  return SCIP_OKAY;
2547 }
2548 #endif
2549 
2550 #define consEnfolpComponents NULL
2551 #define consEnfopsComponents NULL
2552 #define consCheckComponents NULL
2554 /** creates the components constraint handler and includes it in SCIP */
2556  SCIP* scip /**< SCIP data structure */
2557  )
2558 {
2559  SCIP_CONSHDLRDATA* conshdlrdata;
2560  SCIP_CONSHDLR* conshdlr;
2561 
2562  /* create components constraint data */
2563  SCIP_CALL( SCIPallocBlockMemory(scip, &conshdlrdata) );
2564  conshdlrdata->subscipdepth = 0;
2565 
2566  /* include constraint handler */
2570  conshdlrdata) );
2571  assert(conshdlr != NULL);
2572 
2573  SCIP_CALL( SCIPsetConshdlrProp(scip, conshdlr, consPropComponents,
2575  SCIP_CALL( SCIPsetConshdlrPresol(scip, conshdlr, consPresolComponents,
2577 
2578  SCIP_CALL( SCIPsetConshdlrFree(scip, conshdlr, conshdlrFreeComponents) );
2579  SCIP_CALL( SCIPsetConshdlrEnforelax(scip, conshdlr, consEnforelaxComponents) );
2580 #ifndef NDEBUG
2581  SCIP_CALL( SCIPsetConshdlrInitsol(scip, conshdlr, consInitsolComponents) );
2582 #endif
2583  SCIP_CALL( SCIPsetConshdlrCopy(scip, conshdlr, conshdlrCopyComponents, NULL) );
2584  SCIP_CALL( SCIPsetConshdlrDelete(scip, conshdlr, consDeleteComponents) );
2585 
2586  SCIP_CALL( SCIPaddIntParam(scip,
2587  "constraints/" CONSHDLR_NAME "/maxdepth",
2588  "maximum depth of a node to run components detection (-1: disable component detection during solving)",
2589  &conshdlrdata->maxdepth, FALSE, DEFAULT_MAXDEPTH, -1, INT_MAX, NULL, NULL) );
2590  SCIP_CALL( SCIPaddIntParam(scip,
2591  "constraints/" CONSHDLR_NAME "/maxintvars",
2592  "maximum number of integer (or binary) variables to solve a subproblem during presolving (-1: unlimited)",
2593  &conshdlrdata->maxintvars, TRUE, DEFAULT_MAXINTVARS, -1, INT_MAX, NULL, NULL) );
2594  SCIP_CALL( SCIPaddIntParam(scip,
2595  "constraints/" CONSHDLR_NAME "/minsize",
2596  "minimum absolute size (in terms of variables) to solve a component individually during branch-and-bound",
2597  &conshdlrdata->minsize, TRUE, DEFAULT_MINSIZE, 0, INT_MAX, NULL, NULL) );
2599  "constraints/" CONSHDLR_NAME "/minrelsize",
2600  "minimum relative size (in terms of variables) to solve a component individually during branch-and-bound",
2601  &conshdlrdata->minrelsize, TRUE, DEFAULT_MINRELSIZE, 0.0, 1.0, NULL, NULL) );
2603  "constraints/" CONSHDLR_NAME "/nodelimit",
2604  "maximum number of nodes to be solved in subproblems during presolving",
2605  &conshdlrdata->nodelimit, FALSE, DEFAULT_NODELIMIT, -1LL, SCIP_LONGINT_MAX, NULL, NULL) );
2607  "constraints/" CONSHDLR_NAME "/intfactor",
2608  "the weight of an integer variable compared to binary variables",
2609  &conshdlrdata->intfactor, FALSE, DEFAULT_INTFACTOR, 0.0, SCIP_REAL_MAX, NULL, NULL) );
2611  "constraints/" CONSHDLR_NAME "/feastolfactor",
2612  "factor to increase the feasibility tolerance of the main SCIP in all sub-SCIPs, default value 1.0",
2613  &conshdlrdata->feastolfactor, TRUE, DEFAULT_FEASTOLFACTOR, 0.0, 1000000.0, NULL, NULL) );
2614 
2615  return SCIP_OKAY;
2616 }
enum SCIP_Result SCIP_RESULT
Definition: type_result.h:61
void SCIPsortRealInt(SCIP_Real *realarray, int *intarray, int len)
SCIP_RETCODE SCIPprintBestSol(SCIP *scip, FILE *file, SCIP_Bool printzeros)
Definition: scip_sol.c:2235
#define SCIPfreeBlockMemoryArray(scip, ptr, num)
Definition: scip_mem.h:110
int SCIPgetNIntVars(SCIP *scip)
Definition: scip_prob.c:2082
void SCIPconshdlrSetData(SCIP_CONSHDLR *conshdlr, SCIP_CONSHDLRDATA *conshdlrdata)
Definition: cons.c:4229
#define CONSHDLR_ENFOPRIORITY
int SCIPpqueueNElems(SCIP_PQUEUE *pqueue)
Definition: misc.c:1527
SCIP_RETCODE SCIPsetConshdlrDelete(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSDELETE((*consdelete)))
Definition: scip_cons.c:578
SCIP_Bool SCIPinRepropagation(SCIP *scip)
Definition: scip_tree.c:146
SCIP_Real SCIPgetSolvingTime(SCIP *scip)
Definition: scip_timing.c:378
#define DEFAULT_MAXINTVARS
#define NULL
Definition: def.h:267
#define SCIPallocBlockMemoryArray(scip, ptr, num)
Definition: scip_mem.h:93
SCIP_RETCODE SCIPtightenVarLb(SCIP *scip, SCIP_VAR *var, SCIP_Real newbound, SCIP_Bool force, SCIP_Bool *infeasible, SCIP_Bool *tightened)
Definition: scip_var.c:5205
SCIP_Bool SCIPisFeasEQ(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
public methods for SCIP parameter handling
int SCIPvarGetNLocksDownType(SCIP_VAR *var, SCIP_LOCKTYPE locktype)
Definition: var.c:3296
SCIP_NODE * SCIPgetCurrentNode(SCIP *scip)
Definition: scip_tree.c:91
SCIP_STAGE SCIPgetStage(SCIP *scip)
Definition: scip_general.c:380
SCIP_Bool SCIPconsIsDynamic(SCIP_CONS *cons)
Definition: cons.c:8475
public methods for branch and bound tree
#define SCIPduplicateMemoryArray(scip, ptr, source, num)
Definition: scip_mem.h:76
SCIP_Bool SCIPisFeasLT(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
static SCIP_RETCODE freeProblem(PROBLEM **problem)
public methods for memory management
SCIP_CONSHDLR * SCIPfindConshdlr(SCIP *scip, const char *name)
Definition: scip_cons.c:941
SCIP_Real SCIPgetCutoffbound(SCIP *scip)
SCIP_Real SCIPgetPrimalbound(SCIP *scip)
#define SCIPfreeMemoryArray(scip, ptr)
Definition: scip_mem.h:80
SCIP_Real SCIPvarGetLbGlobal(SCIP_VAR *var)
Definition: var.c:18079
static SCIP_DECL_CONSENFORELAX(consEnforelaxComponents)
SCIP_RETCODE SCIPgetRealParam(SCIP *scip, const char *name, SCIP_Real *value)
Definition: scip_param.c:307
SCIP_RETCODE SCIPupdateCutoffbound(SCIP *scip, SCIP_Real cutoffbound)
#define SCIP_MAXSTRLEN
Definition: def.h:288
int SCIPvarGetNLocksUpType(SCIP_VAR *var, SCIP_LOCKTYPE locktype)
Definition: var.c:3354
SCIP_RETCODE SCIPsetConshdlrEnforelax(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSENFORELAX((*consenforelax)))
Definition: scip_cons.c:323
SCIP_RETCODE SCIPdigraphComputeUndirectedComponents(SCIP_DIGRAPH *digraph, int minsize, int *components, int *ncomponents)
Definition: misc.c:8089
SCIP_RETCODE SCIPdelCons(SCIP *scip, SCIP_CONS *cons)
Definition: scip_prob.c:2843
#define SQR(x)
Definition: def.h:214
SCIP_Bool SCIPisPositive(SCIP *scip, SCIP_Real val)
int SCIPgetNOrigVars(SCIP *scip)
Definition: scip_prob.c:2432
SCIP_Real SCIPvarGetLbLocal(SCIP_VAR *var)
Definition: var.c:18135
static SCIP_DECL_CONSDELETE(consDeleteComponents)
SCIP_Bool SCIPisGE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
public solving methods
public methods for timing
#define DEFAULT_INTFACTOR
SCIP_Bool SCIPisFeasGE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
SCIP_RETCODE SCIPprintDisplayLine(SCIP *scip, FILE *file, SCIP_VERBLEVEL verblevel, SCIP_Bool endline)
SCIP_CONS ** SCIPconshdlrGetConss(SCIP_CONSHDLR *conshdlr)
Definition: cons.c:4595
#define FALSE
Definition: def.h:94
SCIP_RETCODE SCIPhashmapCreate(SCIP_HASHMAP **hashmap, BMS_BLKMEM *blkmem, int mapsize)
Definition: misc.c:3074
static SCIP_RETCODE solveSubscip(SCIP *scip, SCIP *subscip, SCIP_Longint nodelimit, SCIP_Real gaplimit)
#define CONSHDLR_EAGERFREQ
SCIP_RETCODE SCIPaddLongintParam(SCIP *scip, const char *name, const char *desc, SCIP_Longint *valueptr, SCIP_Bool isadvanced, SCIP_Longint defaultvalue, SCIP_Longint minvalue, SCIP_Longint maxvalue, SCIP_DECL_PARAMCHGD((*paramchgd)), SCIP_PARAMDATA *paramdata)
Definition: scip_param.c:111
SCIP_RETCODE SCIPcopyLimits(SCIP *sourcescip, SCIP *targetscip)
Definition: scip_copy.c:3296
SCIP_RETCODE SCIPincludeConshdlrBasic(SCIP *scip, SCIP_CONSHDLR **conshdlrptr, const char *name, const char *desc, int enfopriority, int chckpriority, int eagerfreq, SCIP_Bool needscons, SCIP_DECL_CONSENFOLP((*consenfolp)), SCIP_DECL_CONSENFOPS((*consenfops)), SCIP_DECL_CONSCHECK((*conscheck)), SCIP_DECL_CONSLOCK((*conslock)), SCIP_CONSHDLRDATA *conshdlrdata)
Definition: scip_cons.c:181
int SCIPgetNActivePricers(SCIP *scip)
Definition: scip_pricer.c:348
SCIP_Real SCIPinfinity(SCIP *scip)
int SCIPsnprintf(char *t, int len, const char *s,...)
Definition: misc.c:10877
static int getMinsize(SCIP *scip, SCIP_CONSHDLRDATA *conshdlrdata)
SCIP_Bool SCIPisNegative(SCIP *scip, SCIP_Real val)
#define TRUE
Definition: def.h:93
enum SCIP_Retcode SCIP_RETCODE
Definition: type_retcode.h:63
SCIP_RETCODE SCIPdigraphSetSizes(SCIP_DIGRAPH *digraph, int *sizes)
Definition: misc.c:7544
SCIP_RETCODE SCIPsetPresolving(SCIP *scip, SCIP_PARAMSETTING paramsetting, SCIP_Bool quiet)
Definition: scip_param.c:953
int SCIPvarGetProbindex(SCIP_VAR *var)
Definition: var.c:17769
SCIP_RETCODE SCIPincludeConshdlrComponents(SCIP *scip)
public methods for problem variables
PROBLEM * problem
SCIP_RETCODE SCIPtightenVarUb(SCIP *scip, SCIP_VAR *var, SCIP_Real newbound, SCIP_Bool force, SCIP_Bool *infeasible, SCIP_Bool *tightened)
Definition: scip_var.c:5322
int SCIPdigraphGetNComponents(SCIP_DIGRAPH *digraph)
Definition: misc.c:8285
#define SCIPfreeBlockMemory(scip, ptr)
Definition: scip_mem.h:108
void SCIPpqueueFree(SCIP_PQUEUE **pqueue)
Definition: misc.c:1322
void SCIPdigraphGetComponent(SCIP_DIGRAPH *digraph, int compidx, int **nodes, int *nnodes)
Definition: misc.c:8298
SCIP_Real lastprimalbound
SCIP_CONS ** SCIPgetConss(SCIP *scip)
Definition: scip_prob.c:3088
void * SCIPhashmapGetImage(SCIP_HASHMAP *hashmap, void *origin)
Definition: misc.c:3261
SCIP_Bool SCIPisEQ(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
#define DEFAULT_MAXDEPTH
#define SCIP_LONGINT_MAX
Definition: def.h:159
#define SCIPfreeBufferArray(scip, ptr)
Definition: scip_mem.h:136
SCIP_RETCODE SCIPcreate(SCIP **scip)
Definition: scip_general.c:307
constraint handler for handling independent components
#define SCIPallocBlockMemory(scip, ptr)
Definition: scip_mem.h:89
static SCIP_RETCODE freeComponent(COMPONENT *component)
public methods for SCIP variables
SCIP_RETCODE SCIPsetRealParam(SCIP *scip, const char *name, SCIP_Real value)
Definition: scip_param.c:603
SCIP_Bool SCIPconsIsRemovable(SCIP_CONS *cons)
Definition: cons.c:8485
SCIP_RETCODE SCIPcopyPlugins(SCIP *sourcescip, SCIP *targetscip, SCIP_Bool copyreaders, SCIP_Bool copypricers, SCIP_Bool copyconshdlrs, SCIP_Bool copyconflicthdlrs, SCIP_Bool copypresolvers, SCIP_Bool copyrelaxators, SCIP_Bool copyseparators, SCIP_Bool copycutselectors, SCIP_Bool copypropagators, SCIP_Bool copyheuristics, SCIP_Bool copyeventhdlrs, SCIP_Bool copynodeselectors, SCIP_Bool copybranchrules, SCIP_Bool copydisplays, SCIP_Bool copydialogs, SCIP_Bool copytables, SCIP_Bool copyexprhdlrs, SCIP_Bool copynlpis, SCIP_Bool passmessagehdlr, SCIP_Bool *valid)
Definition: scip_copy.c:275
void SCIPwarningMessage(SCIP *scip, const char *formatstr,...)
Definition: scip_message.c:120
#define SCIPdebugMsg
Definition: scip_message.h:78
SCIP_RETCODE SCIPaddIntParam(SCIP *scip, const char *name, const char *desc, int *valueptr, SCIP_Bool isadvanced, int defaultvalue, int minvalue, int maxvalue, SCIP_DECL_PARAMCHGD((*paramchgd)), SCIP_PARAMDATA *paramdata)
Definition: scip_param.c:83
SCIP_RETCODE SCIPcopyParamSettings(SCIP *sourcescip, SCIP *targetscip)
Definition: scip_copy.c:2564
static SCIP_RETCODE solveAndEvalSubscip(SCIP *scip, SCIP_CONSHDLRDATA *conshdlrdata, SCIP *subscip, SCIP_VAR **vars, SCIP_VAR **subvars, SCIP_CONS **conss, int nvars, int nconss, int *ndeletedconss, int *nfixedvars, int *ntightenedbounds, SCIP_RESULT *result, SCIP_Bool *solved)
SCIP_RETCODE SCIPprintStatistics(SCIP *scip, FILE *file)
int SCIPgetNContVars(SCIP *scip)
Definition: scip_prob.c:2172
SCIP_RETCODE SCIPcreateCons(SCIP *scip, SCIP_CONS **cons, const char *name, SCIP_CONSHDLR *conshdlr, SCIP_CONSDATA *consdata, SCIP_Bool initial, SCIP_Bool separate, SCIP_Bool enforce, SCIP_Bool check, SCIP_Bool propagate, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool dynamic, SCIP_Bool removable, SCIP_Bool stickingatnode)
Definition: scip_cons.c:998
SCIP_RETCODE SCIPcreateDigraph(SCIP *scip, SCIP_DIGRAPH **digraph, int nnodes)
SCIP_RETCODE SCIPcreateOrigSol(SCIP *scip, SCIP_SOL **sol, SCIP_HEUR *heur)
Definition: scip_sol.c:421
SCIP_Real SCIPsolGetOrigObj(SCIP_SOL *sol)
Definition: sol.c:2741
#define consEnfopsComponents
public methods for numerical tolerances
public methods for querying solving statistics
const char * SCIPgetProbName(SCIP *scip)
Definition: scip_prob.c:1067
void SCIPsortIntPtr(int *intarray, void **ptrarray, int len)
public methods for the branch-and-bound tree
static SCIP_DECL_CONSLOCK(consLockComponents)
SCIP_Longint SCIPnodeGetNumber(SCIP_NODE *node)
Definition: tree.c:7490
SCIP_Bool solved
SCIP_Real SCIPvarGetUbGlobal(SCIP_VAR *var)
Definition: var.c:18089
SCIP_RETCODE SCIPsetConshdlrInitsol(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSINITSOL((*consinitsol)))
Definition: scip_cons.c:444
#define SCIPduplicateBlockMemoryArray(scip, ptr, source, num)
Definition: scip_mem.h:105
#define CONSHDLR_CHECKPRIORITY
#define CONSHDLR_NAME
static SCIP_RETCODE copyToSubscip(SCIP *scip, SCIP *subscip, const char *name, SCIP_VAR **vars, SCIP_VAR **subvars, SCIP_CONS **conss, SCIP_HASHMAP *varmap, SCIP_HASHMAP *consmap, int nvars, int nconss, SCIP_Bool *success)
public methods for managing constraints
SCIP_VAR ** subvars
SCIP_Bool SCIPisPresolveFinished(SCIP *scip)
Definition: scip_general.c:627
SCIP_Real lastdualbound
SCIP_RETCODE SCIPsolve(SCIP *scip)
Definition: scip_solve.c:2488
SCIP_RETCODE SCIPsetConshdlrCopy(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSHDLRCOPY((*conshdlrcopy)), SCIP_DECL_CONSCOPY((*conscopy)))
Definition: scip_cons.c:347
const char * SCIPheurGetName(SCIP_HEUR *heur)
Definition: heur.c:1453
SCIP_HEUR * SCIPfindHeur(SCIP *scip, const char *name)
Definition: scip_heur.c:258
#define CONSHDLR_PRESOLTIMING
#define SCIPerrorMessage
Definition: pub_message.h:64
const char * SCIPconshdlrGetName(SCIP_CONSHDLR *conshdlr)
Definition: cons.c:4199
SCIP_Bool SCIPisParamFixed(SCIP *scip, const char *name)
Definition: scip_param.c:219
SCIP_RETCODE SCIPgetConsNVars(SCIP *scip, SCIP_CONS *cons, int *nvars, SCIP_Bool *success)
Definition: scip_cons.c:2622
SCIP_RETCODE SCIPaddCons(SCIP *scip, SCIP_CONS *cons)
Definition: scip_prob.c:2770
SCIP_Bool SCIPisLT(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
static SCIP_DECL_CONSHDLRCOPY(conshdlrCopyComponents)
SCIP_Real SCIPgetDualbound(SCIP *scip)
SCIP_RETCODE SCIPsetBoolParam(SCIP *scip, const char *name, SCIP_Bool value)
Definition: scip_param.c:429
SCIP_STATUS SCIPgetStatus(SCIP *scip)
Definition: scip_general.c:498
BMS_BLKMEM * SCIPblkmem(SCIP *scip)
Definition: scip_mem.c:57
const char * SCIPconsGetName(SCIP_CONS *cons)
Definition: cons.c:8216
SCIP_RETCODE SCIPcheckSolOrig(SCIP *scip, SCIP_SOL *sol, SCIP_Bool *feasible, SCIP_Bool printreason, SCIP_Bool completely)
Definition: scip_sol.c:3309
SCIP_Bool SCIPconsIsPropagated(SCIP_CONS *cons)
Definition: cons.c:8435
#define CONSHDLR_MAXPREROUNDS
const char * SCIPvarGetName(SCIP_VAR *var)
Definition: var.c:17420
SCIP_STATUS laststatus
SCIP_RETCODE SCIPsetConshdlrFree(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSFREE((*consfree)))
Definition: scip_cons.c:372
void SCIPhashmapFree(SCIP_HASHMAP **hashmap)
Definition: misc.c:3108
SCIP_CONSHDLRDATA * SCIPconshdlrGetData(SCIP_CONSHDLR *conshdlr)
Definition: cons.c:4219
SCIP_RETCODE SCIPgetBoolParam(SCIP *scip, const char *name, SCIP_Bool *value)
Definition: scip_param.c:250
SCIP_HEUR * SCIPsolGetHeur(SCIP_SOL *sol)
Definition: sol.c:2804
SCIP_Real SCIPgetSolTransObj(SCIP *scip, SCIP_SOL *sol)
Definition: scip_sol.c:1347
SCIP_PARAM * SCIPgetParam(SCIP *scip, const char *name)
Definition: scip_param.c:234
public methods for problem copies
public methods for primal CIP solutions
#define CONSHDLR_DELAYPROP
static SCIP_RETCODE componentSetupWorkingSol(COMPONENT *component, SCIP_HASHMAP *varmap)
#define SCIP_CALL(x)
Definition: def.h:380
SCIP_Bool SCIPisFeasGT(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
struct Component COMPONENT
SCIP_Bool SCIPisFeasLE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
static SCIP_DECL_SORTPTRCOMP(componentSort)
void SCIPverbMessage(SCIP *scip, SCIP_VERBLEVEL msgverblevel, FILE *file, const char *formatstr,...)
Definition: scip_message.c:225
SCIP_RETCODE SCIPdigraphAddArc(SCIP_DIGRAPH *digraph, int startnode, int endnode, void *data)
Definition: misc.c:7662
#define SCIPdebugGetSolVal(scip, var, val)
Definition: debug.h:299
SCIP_RETCODE SCIPgetLongintParam(SCIP *scip, const char *name, SCIP_Longint *value)
Definition: scip_param.c:288
struct SCIP_ConsData SCIP_CONSDATA
Definition: type_cons.h:65
void * SCIPpqueueRemove(SCIP_PQUEUE *pqueue)
Definition: misc.c:1493
SCIP_RETCODE SCIPgetConsVars(SCIP *scip, SCIP_CONS *cons, SCIP_VAR **vars, int varssize, SCIP_Bool *success)
Definition: scip_cons.c:2578
public methods for primal heuristic plugins and divesets
public methods for constraint handler plugins and constraints
SCIP_RETCODE SCIPgetConsCopy(SCIP *sourcescip, SCIP *targetscip, SCIP_CONS *sourcecons, SCIP_CONS **targetcons, SCIP_CONSHDLR *sourceconshdlr, SCIP_HASHMAP *varmap, SCIP_HASHMAP *consmap, const char *name, SCIP_Bool initial, SCIP_Bool separate, SCIP_Bool enforce, SCIP_Bool check, SCIP_Bool propagate, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool dynamic, SCIP_Bool removable, SCIP_Bool stickingatnode, SCIP_Bool global, SCIP_Bool *valid)
Definition: scip_copy.c:1591
SCIP_RETCODE SCIPaddConsNode(SCIP *scip, SCIP_NODE *node, SCIP_CONS *cons, SCIP_NODE *validnode)
Definition: scip_prob.c:3323
static SCIP_DECL_CONSPRESOL(consPresolComponents)
SCIP_VAR ** vars
#define SCIPallocBufferArray(scip, ptr, num)
Definition: scip_mem.h:124
SCIP_RETCODE SCIPsetSolVal(SCIP *scip, SCIP_SOL *sol, SCIP_VAR *var, SCIP_Real val)
Definition: scip_sol.c:1077
public data structures and miscellaneous methods
static SCIP_RETCODE solveComponent(COMPONENT *component, SCIP_Bool lastcomponent, SCIP_RESULT *result)
SCIP_RETCODE SCIPfreeTransform(SCIP *scip)
Definition: scip_solve.c:3334
SCIP_RETCODE SCIPcheckSol(SCIP *scip, SCIP_SOL *sol, SCIP_Bool printreason, SCIP_Bool completely, SCIP_Bool checkbounds, SCIP_Bool checkintegrality, SCIP_Bool checklprows, SCIP_Bool *feasible)
Definition: scip_sol.c:3251
static SCIP_RETCODE findComponents(SCIP *scip, SCIP_CONSHDLRDATA *conshdlrdata, SCIP_Real *fixedvarsobjsum, SCIP_VAR **sortedvars, SCIP_CONS **sortedconss, int *compstartsvars, int *compstartsconss, int *nsortedvars, int *nsortedconss, int *ncomponents, int *ncompsminsize, int *ncompsmaxsize)
#define SCIP_Bool
Definition: def.h:91
static SCIP_RETCODE createConsComponents(SCIP *scip, SCIP_CONS **cons, const char *name, PROBLEM *problem)
int SCIPgetNImplVars(SCIP *scip)
Definition: scip_prob.c:2127
#define DEFAULT_MINSIZE
char * name
Definition: struct_cons.h:49
static SCIP_RETCODE fillDigraph(SCIP *scip, SCIP_DIGRAPH *digraph, SCIP_CONS **conss, int nconss, int *unfixedvarpos, int nunfixedvars, int *firstvaridxpercons, SCIP_Bool *success)
enum SCIP_Status SCIP_STATUS
Definition: type_stat.h:67
#define DEFAULT_FEASTOLFACTOR
#define consCheckComponents
int SCIPgetDepth(SCIP *scip)
Definition: scip_tree.c:670
SCIP_Real SCIPgetGap(SCIP *scip)
static SCIP_RETCODE initComponent(PROBLEM *problem)
void SCIPsolSetHeur(SCIP_SOL *sol, SCIP_HEUR *heur)
Definition: sol.c:2849
struct Problem PROBLEM
#define SCIPdebugSolIsValidInSubtree(scip, isvalidinsubtree)
Definition: debug.h:300
SCIP_CONSHDLR * SCIPconsGetHdlr(SCIP_CONS *cons)
Definition: cons.c:8236
#define MIN(x, y)
Definition: def.h:243
methods for debugging
SCIP_RETCODE SCIPsetIntParam(SCIP *scip, const char *name, int value)
Definition: scip_param.c:487
#define CONSHDLR_PROPFREQ
SCIP_RETCODE SCIPfreeSol(SCIP *scip, SCIP_SOL **sol)
Definition: scip_sol.c:841
SCIP_Bool SCIPconsIsChecked(SCIP_CONS *cons)
Definition: cons.c:8415
static SCIP_DECL_CONSPROP(consPropComponents)
SCIP_Bool SCIPconsIsInitial(SCIP_CONS *cons)
Definition: cons.c:8385
SCIP_Real SCIPvarGetObj(SCIP_VAR *var)
Definition: var.c:17927
int SCIPgetNSols(SCIP *scip)
Definition: scip_sol.c:2070
SCIP_Bool SCIPallowWeakDualReds(SCIP *scip)
Definition: scip_var.c:8658
SCIP_RETCODE SCIPfixVar(SCIP *scip, SCIP_VAR *var, SCIP_Real fixedval, SCIP_Bool *infeasible, SCIP_Bool *fixed)
Definition: scip_var.c:8278
SCIP_Real SCIPgetSolOrigObj(SCIP *scip, SCIP_SOL *sol)
Definition: scip_sol.c:1300
SCIP_RETCODE SCIPfixParam(SCIP *scip, const char *name)
Definition: scip_param.c:367
SCIP_Bool SCIPisInfinity(SCIP *scip, SCIP_Real val)
int SCIPgetNBinVars(SCIP *scip)
Definition: scip_prob.c:2037
int SCIPconshdlrGetNActiveConss(SCIP_CONSHDLR *conshdlr)
Definition: cons.c:4672
SCIP_Bool SCIPinProbing(SCIP *scip)
Definition: scip_probing.c:97
public methods for variable pricer plugins
int SCIPgetNVars(SCIP *scip)
Definition: scip_prob.c:1992
#define SCIP_REAL_MAX
Definition: def.h:174
SCIP_RETCODE SCIPupdateLocalLowerbound(SCIP *scip, SCIP_Real newbound)
Definition: scip_prob.c:3696
SCIP_RETCODE SCIPpqueueCreate(SCIP_PQUEUE **pqueue, int initsize, SCIP_Real sizefac, SCIP_DECL_SORTPTRCOMP((*ptrcomp)), SCIP_DECL_PQUEUEELEMCHGPOS((*elemchgpos)))
Definition: misc.c:1295
SCIP_RETCODE SCIPaddSol(SCIP *scip, SCIP_SOL *sol, SCIP_Bool *stored)
Definition: scip_sol.c:2791
methods for sorting joint arrays of various types
#define SCIP_LONGINT_FORMAT
Definition: def.h:165
SCIP_RETCODE SCIPcopyProb(SCIP *sourcescip, SCIP *targetscip, SCIP_HASHMAP *varmap, SCIP_HASHMAP *consmap, SCIP_Bool global, const char *name)
Definition: scip_copy.c:527
general public methods
#define MAX(x, y)
Definition: def.h:239
SCIP_VAR ** fixedvars
SCIP_SOL * SCIPgetBestSol(SCIP *scip)
Definition: scip_sol.c:2169
SCIP_Bool SCIPisGT(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
public methods for solutions
SCIP_Longint SCIPgetMemUsed(SCIP *scip)
Definition: scip_mem.c:100
SCIP_RETCODE SCIPpqueueInsert(SCIP_PQUEUE *pqueue, void *elem)
Definition: misc.c:1394
SCIP_RETCODE SCIPgetVarCopy(SCIP *sourcescip, SCIP *targetscip, SCIP_VAR *sourcevar, SCIP_VAR **targetvar, SCIP_HASHMAP *varmap, SCIP_HASHMAP *consmap, SCIP_Bool global, SCIP_Bool *success)
Definition: scip_copy.c:711
SCIP_CONSDATA * SCIPconsGetData(SCIP_CONS *cons)
Definition: cons.c:8246
int SCIPgetNConss(SCIP *scip)
Definition: scip_prob.c:3042
static SCIP_RETCODE componentCreateSubscip(COMPONENT *component, SCIP_CONSHDLRDATA *conshdlrdata, SCIP_HASHMAP *varmap, SCIP_HASHMAP *consmap, SCIP_CONS **conss, int nconss, SCIP_Bool *success)
static SCIP_RETCODE sortComponents(SCIP *scip, SCIP_CONSHDLRDATA *conshdlrdata, SCIP_DIGRAPH *digraph, SCIP_CONS **conss, SCIP_VAR **vars, int *varcomponent, int *conscomponent, int nconss, int nvars, int *firstvaridxpercons, int *ncompsminsize, int *ncompsmaxsize)
public methods for the probing mode
SCIP_RETCODE SCIPreleaseCons(SCIP *scip, SCIP_CONS **cons)
Definition: scip_cons.c:1174
SCIP_SOL * workingsol
SCIP_Real fixedvarsobjsum
SCIP_RETCODE SCIPsetConshdlrPresol(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSPRESOL((*conspresol)), int maxprerounds, SCIP_PRESOLTIMING presoltiming)
Definition: scip_cons.c:540
public methods for message output
SCIP_Real SCIPretransformObj(SCIP *scip, SCIP_Real obj)
Definition: scip_sol.c:1432
static SCIP_DECL_CONSINITSOL(consInitsolComponents)
#define DEFAULT_MINRELSIZE
SCIP_Longint SCIPgetMemExternEstim(SCIP *scip)
Definition: scip_mem.c:126
SCIP_VAR ** SCIPgetVars(SCIP *scip)
Definition: scip_prob.c:1947
static SCIP_RETCODE createAndSplitProblem(SCIP *scip, SCIP_CONSHDLRDATA *conshdlrdata, SCIP_Real fixedvarsobjsum, SCIP_VAR **sortedvars, SCIP_CONS **sortedconss, int *compstartsvars, int *compstartsconss, int ncomponents, PROBLEM **problem)
#define SCIP_Real
Definition: def.h:173
SCIP_Bool SCIPconsIsModifiable(SCIP_CONS *cons)
Definition: cons.c:8465
SCIP_Bool SCIPisStopped(SCIP *scip)
Definition: scip_general.c:718
static SCIP_RETCODE solveProblem(PROBLEM *problem, SCIP_RESULT *result)
SCIP * subscip
public methods for message handling
SCIP_Bool SCIPconsIsEnforced(SCIP_CONS *cons)
Definition: cons.c:8405
#define DEFAULT_NODELIMIT
public methods for data structures
SCIP_Bool SCIPconsIsSeparated(SCIP_CONS *cons)
Definition: cons.c:8395
#define SCIP_Longint
Definition: def.h:158
int SCIPvarGetIndex(SCIP_VAR *var)
Definition: var.c:17759
#define SCIPdebugAddSolVal(scip, var, val)
Definition: debug.h:298
#define CONSHDLR_DESC
SCIP_VARTYPE SCIPvarGetType(SCIP_VAR *var)
Definition: var.c:17585
SCIP_RETCODE SCIPtransformProb(SCIP *scip)
Definition: scip_solve.c:222
#define SCIPdebugSolIsEnabled(scip)
Definition: debug.h:303
SCIP_Bool SCIPisZero(SCIP *scip, SCIP_Real val)
SCIP_Bool SCIPisLE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
int lastbestsolindex
static SCIP_RETCODE initProblem(SCIP *scip, PROBLEM **problem, SCIP_Real fixedvarsobjsum, int ncomponents)
struct SCIP_ConshdlrData SCIP_CONSHDLRDATA
Definition: type_cons.h:64
SCIP_VAR ** fixedsubvars
static SCIP_DECL_CONSFREE(conshdlrFreeComponents)
SCIP_Real SCIPvarGetUbLocal(SCIP_VAR *var)
Definition: var.c:18145
#define CONSHDLR_NEEDSCONS
SCIP_RETCODE SCIPinterruptSolve(SCIP *scip)
Definition: scip_solve.c:3420
#define BMSclearMemoryArray(ptr, num)
Definition: memory.h:130
SCIP_Bool SCIPisSumLT(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
public methods for primal heuristics
#define CONSHDLR_PROP_TIMING
void SCIPaddNNodes(SCIP *scip, SCIP_Longint nnodes)
void SCIPdigraphFree(SCIP_DIGRAPH **digraph)
Definition: misc.c:7568
SCIP_RETCODE SCIPresetParam(SCIP *scip, const char *name)
Definition: scip_param.c:835
SCIP_Longint SCIPgetNNodes(SCIP *scip)
#define SCIPdebugSolEnable(scip)
Definition: debug.h:301
public methods for global and local (sub)problems
SCIP_RETCODE SCIPgetActiveVars(SCIP *scip, SCIP_VAR **vars, int *nvars, int varssize, int *requiredsize)
Definition: scip_var.c:1832
#define consEnfolpComponents
SCIP_Real SCIPgetSolVal(SCIP *scip, SCIP_SOL *sol, SCIP_VAR *var)
Definition: scip_sol.c:1217
static SCIP_RETCODE createSubscip(SCIP *scip, SCIP_CONSHDLRDATA *conshdlrdata, SCIP **subscip)
int SCIPsolGetIndex(SCIP_SOL *sol)
Definition: sol.c:2835
SCIP_Bool SCIPallowStrongDualReds(SCIP *scip)
Definition: scip_var.c:8631
SCIP_RETCODE SCIPaddRealParam(SCIP *scip, const char *name, const char *desc, SCIP_Real *valueptr, SCIP_Bool isadvanced, SCIP_Real defaultvalue, SCIP_Real minvalue, SCIP_Real maxvalue, SCIP_DECL_PARAMCHGD((*paramchgd)), SCIP_PARAMDATA *paramdata)
Definition: scip_param.c:139
#define ABS(x)
Definition: def.h:235
SCIP_RETCODE SCIPsetLongintParam(SCIP *scip, const char *name, SCIP_Longint value)
Definition: scip_param.c:545
SCIP_Bool SCIPvarIsActive(SCIP_VAR *var)
Definition: var.c:17749
SCIP_RETCODE SCIPfree(SCIP **scip)
Definition: scip_general.c:339
SCIP_RETCODE SCIPcreateSol(SCIP *scip, SCIP_SOL **sol, SCIP_HEUR *heur)
Definition: scip_sol.c:184
#define SCIPreallocBufferArray(scip, ptr, num)
Definition: scip_mem.h:128
void SCIPvarMarkDeleteGlobalStructures(SCIP_VAR *var)
Definition: var.c:17677
SCIP_RETCODE SCIPsetConshdlrProp(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSPROP((*consprop)), int propfreq, SCIP_Bool delayprop, SCIP_PROPTIMING proptiming)
Definition: scip_cons.c:281
memory allocation routines