Online generation via offline selection - Low dimensional linear cuts from QP SDP relaxation -

Radu Baltean-Lugojan
Ruth Misener
Computational Optimisation Group
Department of Computing

Pierre Bonami Andrea Tramontani IBM Research CPLEX Team

Imperial College London

https://www.dropbox.com/s/sfpiy9godzqo2t3/preprint.pdf?dl=0

2018/03/07

Deterministically solving non-convex QP

QP:

 $\min_{x} x^{T} Q x + c^{T} x$ s.t. $Ax \le b$, $x \in [0, 1]^{N}$

Prior work: Branch & Cut with relaxations

- RLT McCormick + ext., e.g. triangle ineq. Bonami et al. [2016]
- SDP/SOCP/Convex Dong [2016], Saxena et al. [2011], Buchheim and Wiegele [2013], Zheng et al. [2011], Bao et al. [2011], Anstreicher [2009], Chen and Burer [2012]
- LP relaxation of SDP (typically high dimensional) e.g. Qualizza et al. [2012], Sherali and Fraticelli [2002]
- Edge-concave Bao et al. [2009], Misener and Floudas [2012]

This work: Off-line (learned) selection of low-dim. LP cuts from SDP

- Develop online strong low dimensional linear cuts;
- Offline cut selection via neural net estimator trained "a priori";
- Cheaply outer-approximate SDP esp. in combination with other low-dim cuts (RLT, triangle, edge-concave, Boolean quadric polytope).

(Anstreicher, J Glob Optim, 2009) $\min_{x} x^{T}Qx + c^{T}x$ $Ax \leq b,$

 $x \in [0,1]^N$

•
$$X_{ii} = X_{ii}$$
,

- $Q \bullet X$ is the matrix inner product $Q \bullet X = \sum_{i,j=1}^{N} Q_{ij} \cdot X_{ij}$,
- ullet SDP \equiv Semidefinite programming,
- RLT ≡ Reformulation linearisation technique.

$$\min_{x} \quad Q \bullet X + c^{T}x$$

$$Ax \leq b,$$

$$X = xx^{T}$$

$$x \in [0, 1]^{N}$$

$$X \in [0, 1]^{N \times N}$$

•
$$X_{ii} = X_{ii}$$

- $Q \bullet X$ is the matrix inner product $Q \bullet X = \sum_{i,j=1}^{N} Q_{ij} \cdot X_{ij}$,
- ullet SDP \equiv Semidefinite programming,
- RLT ≡ Reformulation linearisation technique.

$$\begin{array}{lll} \min\limits_{X} & Q \bullet X + c^T x & \Rightarrow & \min\limits_{X} & Q \bullet X + c^T x \\ & Ax \leq b, & Ax \leq b, \\ & X = xx^T & X \succeq xx^T & \text{SDP relaxation} \\ & x \in [0,1]^N & X_{ii} \leq x_i & \\ & X \in [0,1]^{N \times N} & X_{ij} - x_i - x_j \geq -1 \\ & X_{ij} - x_i & \leq & 0 & \text{RLT relaxation} \\ & X_{ij} & - x_j \leq & 0 \\ & x \in [0,1]^N & \\ & X \in [0,1]^{N \times N} & \end{array}$$

•
$$X_{ij} = X_{ji}$$
,

•
$$Q \bullet X$$
 is the matrix inner product $Q \bullet X = \sum_{i,j=1}^{N} Q_{ij} \cdot X_{ij}$,

- SDP = Semidefinite programming,
- \bullet RLT \equiv Reformulation linearisation technique.

$$\begin{array}{lll} \min\limits_{x} & Q \bullet X + c^T x & \Rightarrow & \min\limits_{x} & Q \bullet X + c^T x \\ & Ax \leq b, & & & & \\ & X = xx^T & & & & \\ & x \in [0,1]^N & & & & \\ & X \in [0,1]^{N} & & & & \\ & X_{ii} \leq \mathbf{x_i} & & \\ & X_{ij} - x_i - x_j \geq -1 \\ & & & X_{ij} - x_i \leq 0 \\ & & & & \\ & & & X_{ij} - x_j \leq 0 \\ & & & & \\ & & & & \\ & & & X \in [0,1]^N \\ & & & & \\ & & & X \in [0,1]^N \end{array}$$

$$\bullet \ X_{ij} = X_{ji},$$

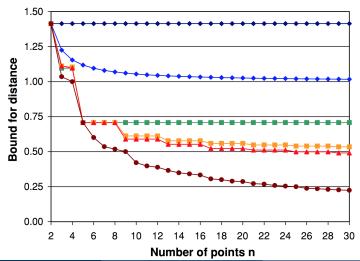
•
$$Q \bullet X$$
 is the matrix inner product $Q \bullet X = \sum_{i,j=1}^{N} Q_{ij} \cdot X_{ij}$,

- SDP = Semidefinite programming,
- \bullet RLT \equiv Reformulation linearisation technique.

$$\begin{array}{lll} \min\limits_{x} & Q \bullet X + c^T x & \Rightarrow & \min\limits_{x} & Q \bullet X + c^T x \\ & Ax \leq b, & & & & \\ & X = xx^T & & & & & \\ & x \in [0,1]^N & & & & & \\ & X \in [0,1]^{N} & & & & & \\ & X \in [0,1]^{N \times N} & & & & \\ & & X_{ij} - \mathbf{x_i} - \mathbf{x_j} \geq -1 \\ & & & & X_{ij} - \mathbf{x_i} \leq 0 \\ & & & & X_{ij} - \mathbf{x_j} \leq 0 \\ & & & & x \in [0,1]^N \\ & & & X \in [0,1]^N \end{array}$$

- $X_{ij} = X_{ji}$,
- $Q \bullet X$ is the matrix inner product $Q \bullet X = \sum_{i,j=1}^{N} Q_{ij} \cdot X_{ij}$,
- SDP = Semidefinite programming,
- \bullet RLT \equiv Reformulation linearisation technique.

SDP & RLT relaxations: Point Packing



Schur's complement & Decomposition for SDP relaxations

Schur's complement

SDP Relaxation
$$X = xx^T \Rightarrow \text{relax} \Rightarrow X \succeq xx^T$$

Schur's complement
$$X \succeq xx^T \iff \begin{bmatrix} 1 & x^T \\ x & X \end{bmatrix} \succeq 0$$

Key Idea Consider smaller subsets

We have $X = xx^T$, so $X_S = x_S x_S^T$ for all $S \subset \overline{1, N}$, e.g.

$$\begin{bmatrix} 1 & x_1 & x_2 & x_3 & x_4 \\ x_1 & X_{11} & X_{12} & X_{13} & X_{14} \\ x_2 & X_{21} & X_{22} & X_{23} & X_{24} \\ x_3 & X_{31} & X_{32} & X_{33} & X_{34} \\ x_4 & X_{41} & X_{42} & X_{43} & X_{44} \end{bmatrix} \succeq 0 \implies \begin{bmatrix} 1 & x_1 & x_2 & x_3 \\ x_1 & X_{11} & X_{12} & X_{13} \\ x_2 & X_{21} & X_{22} & X_{23} \\ x_3 & X_{31} & X_{32} & X_{33} \end{bmatrix} \succeq 0$$

Sum-additive objective decomposition

Recall Power set \mathcal{P}_n

If finite set S has |S| = n elements, then S has $|\mathcal{P}_n| = 2^n$ subsets.

$$\begin{array}{ll} \min\limits_{x} & Q \bullet X + c^T x & \Longrightarrow & \min\limits_{x} & \sum\limits_{\forall S \in \mathcal{P}_n} Q_S' \bullet X_S + c^T x \\ & Ax \leq b, & Ax \leq b, \\ & X = xx^T & & X = xx^T \\ & x \in [0,1]^N & & x \in [0,1]^N \\ & X \in [0,1]^{N \times N} & & X \in [0,1]^{N \times N} \end{array}$$

Initial RLT relaxation

$$\begin{array}{lll} \min\limits_{x} & Q \bullet X + c^T x & \Rightarrow & \min\limits_{x} & Q \bullet X + c^T x & \Rightarrow \tilde{x}, \tilde{X} \\ & Ax \leq b, & & Ax \leq b, \\ & X = xx^T & & X_{ij} - x_i - x_j \geq -1 & \forall i, j \\ & x \in [0, 1]^N & & X_{ij} - x_i \leq 0 & \forall i, j \\ & X \in [0, 1]^{N \times N} & & X_{ij} - x_j \leq 0 & \forall i, j \\ & X_{ij} = X_{ji} & \forall i, j \\ & x \in [0, 1]^N \\ & X \in [0, 1]^{N \times N} \end{array}$$

Cutting plane motivation

- \tilde{x} is feasible in the space of the original QP,
- ullet For nonconvex QP, \tilde{X} may be infeasible in the original QP,
- I find LP solvers easier to use than SDP solvers,
- As in MIP & SAT, may want low-dimensional cutting planes.

(1) QP SDP relaxation

$$\min_{x,X} Q \cdot X + c^{T} x$$
s.t. $Ax \leq b$,
$$\begin{bmatrix} 1 & x^{T} \\ x & X \end{bmatrix} \succeq 0$$
,
$$x \in [0,1]^{N}, X_{ii} < x_{i} \ \forall i$$

(2) QP SDP relaxation at given point \tilde{x}

$$\min_{X} f(X|\tilde{x}) = Q \cdot X$$

$$\begin{bmatrix} 1 & \tilde{x}^T \end{bmatrix}$$

s.t. $\begin{bmatrix} 1 & \tilde{x}^T \\ \tilde{x} & X \end{bmatrix} \succeq 0, \ X_{ii} \leq \tilde{x}_i \ \forall i$

(3) Relaxed QP SDP relaxation at given \tilde{x}

$$\begin{split} & \min_{X} \sum_{\forall S \in \mathcal{P}_{n}} f_{S}(X_{S} | \tilde{x}_{S}) \\ & \text{s.t.} \quad \begin{bmatrix} 1 & \tilde{x}_{S}^{T} \\ \tilde{x}_{S} & X_{S} \end{bmatrix} \succeq 0 \ \forall S \in \mathcal{P}_{n}, \ X_{ii} \leq \tilde{x}_{i} \ \forall i, \end{split}$$

where
$$\mathcal{P}_n = \{S \subset \overline{1,N}, \ |S| = n \leq N\}$$
 (*) and,

$$f(X|\tilde{x}) = Q \cdot X = \sum_{\forall S \in \mathcal{P}_n} Q_S \cdot X_S = \sum_{\forall S \in \mathcal{P}_n} f_S(X_S|\tilde{x}_S).$$

$$\forall S \in \mathcal{P}_n \left\{ \begin{array}{l} f_S^*(X_S^* | \tilde{x}_S) = \min_{X_S} Q_S \cdot X_S \\ \text{s.t.} \left[\begin{matrix} 1 & \tilde{x}_S^T \\ \tilde{x}_S & X_S \end{matrix} \right] \succeq 0, \quad X_{ii} \leq \tilde{x}_i \ \forall i \in S \end{array} \right.$$

(1) QP SDP relaxation

$$\min_{x,X} Q \cdot X + c^{T} x$$
s.t. $Ax \leq b$,
$$\begin{bmatrix} 1 & x^{T} \\ x & X \end{bmatrix} \succeq 0$$
,
$$x \in [0,1]^{N}, X_{ii} < x_{i} \ \forall i$$

(2) QP SDP relaxation at given point \tilde{x}

$$\min_{X} f(X|\tilde{x}) = Q \cdot X$$
s.t.
$$\begin{bmatrix} 1 & \tilde{x}^{T} \\ \tilde{x} & X \end{bmatrix} \succeq 0, \ X_{ii} \leq \tilde{x}_{i} \ \forall i$$

(3) Relaxed QP SDP relaxation at given \tilde{x}

$$\begin{aligned} & \min_{X} \sum_{\forall S \in \mathcal{P}_{n}} f_{S}(X_{S} | \tilde{x}_{S}) \\ & \text{s.t. } \begin{bmatrix} 1 & \tilde{x}_{S}^{T} \\ \tilde{x}_{S} & X_{S} \end{bmatrix} \succeq 0 \ \forall S \in \mathcal{P}_{n}, \ X_{ii} \leq \tilde{x}_{i} \ \forall i, \end{aligned}$$

where
$$\mathcal{P}_n = \{S \subset \overline{1,N}, \ |S| = n \leq N\}$$
 (*) and,

$$f(X|\tilde{x}) = Q \cdot X = \sum_{\forall S \in \mathcal{P}_n} Q_S \cdot X_S = \sum_{\forall S \in \mathcal{P}_n} f_S(X_S|\tilde{x}_S).$$

$$\forall S \in \mathcal{P}_n \left\{ \begin{array}{l} f_S^*(X_S^* | \tilde{x}_S) = \min_{X_S} Q_S \cdot X_S \\ \text{s.t.} \left[\begin{matrix} 1 & \tilde{x}_S^T \\ \tilde{x}_S & X_S \end{matrix} \right] \succeq 0, \quad X_{ii} \leq \tilde{x}_i \ \forall i \in S \end{array} \right.$$

(1) QP SDP relaxation

$$\min_{x,X} Q \cdot X + c^{T} x$$
s.t. $Ax \leq b$,
$$\begin{bmatrix} 1 & x^{T} \\ x & X \end{bmatrix} \succeq 0$$
,
$$x \in [0,1]^{N}, X_{ii} < x_{i} \ \forall i$$

(2) QP SDP relaxation at given point \tilde{x}

$$\min_{X} f(X|\tilde{x}) = Q \cdot X$$

s.t.
$$\begin{bmatrix} 1 & \tilde{x}^T \\ \tilde{x} & X \end{bmatrix} \succeq 0, \ X_{ii} \leq \tilde{x}_i \ \forall i$$

(*) We take n = 3, 4, 5 in our experiments.

(3) Relaxed QP SDP relaxation at given \tilde{x}

$$\min_{X} \sum_{\forall S \in \mathcal{P}_{n}} f_{S}(X_{S} | \tilde{x}_{S})$$
s.t.
$$\begin{bmatrix}
1 & \tilde{x}_{S}^{T} \\ \tilde{x}_{S} & X_{S}
\end{bmatrix} \succeq 0 \, \forall S \in \mathcal{P}_{n}, \, X_{ii} \leq \tilde{x}_{i} \, \forall i,$$

where
$$\mathcal{P}_n = \{S \subset \overline{1,N}, \ |S| = n \leq N\}$$
 (*) and,

$$f(X|\tilde{x}) = Q \cdot X = \sum_{\forall S \in \mathcal{P}_n} Q_S \cdot X_S = \sum_{\forall S \in \mathcal{P}_n} f_S(X_S|\tilde{x}_S).$$

$$\forall S \in \mathcal{P}_n \left\{ \begin{array}{l} f_S^*(X_S^* | \tilde{x}_S) = \min_{X_S} Q_S \cdot X_S \\ \\ \text{s.t.} \left[\begin{matrix} 1 & \tilde{x}_S^T \\ \tilde{x}_S & X_S \end{matrix} \right] \succeq 0, \quad X_{ii} \leq \tilde{x}_i \ \forall i \in S \end{array} \right.$$

(1) QP SDP relaxation

$$\min_{x,X} Q \cdot X + c^{T} x$$
s.t. $Ax \leq b$,
$$\begin{bmatrix} 1 & x^{T} \\ x & X \end{bmatrix} \succeq 0$$
,
$$x \in [0,1]^{N}, X_{ii} < x_{i} \ \forall i$$

(2) QP SDP relaxation at given point \tilde{x}

$$\min_{X} f(X|\tilde{x}) = Q \cdot X$$

s.t.
$$\begin{bmatrix} 1 & \tilde{x}^T \\ \tilde{x} & X \end{bmatrix} \succeq 0, \ X_{ii} \leq \tilde{x}_i \ \forall i$$

(*) We take n = 3, 4, 5 in our experiments.

(3) Relaxed QP SDP relaxation at given \tilde{x}

$$\begin{aligned} & \min_{X} \sum_{\forall S \in \mathcal{P}_{n}} f_{S}(X_{S} | \tilde{x}_{S}) \\ & \text{s.t.} \quad \begin{bmatrix} 1 & \tilde{x}_{S}^{T} \\ \tilde{x}_{S} & X_{S} \end{bmatrix} \succeq 0 \ \forall S \in \mathcal{P}_{n}, \ X_{ii} \leq \tilde{x}_{i} \ \forall i, \end{aligned}$$

where $\mathcal{P}_n = \{S \subset \overline{1,N}, \ |S| = n \leq N\}$ (*) and,

$$f(X|\tilde{x}) = Q \cdot X = \sum_{\forall S \in \mathcal{P}_n} Q_S \cdot X_S = \sum_{\forall S \in \mathcal{P}_n} f_S(X_S|\tilde{x}_S).$$

$$\forall S \in \mathcal{P}_n \left\{ \begin{array}{l} f_S^*(X_S^* | \tilde{x}_S) = \min_{X_S} Q_S \cdot X_S \\ \\ \text{s.t.} \left[\begin{matrix} 1 & \tilde{x}_S^T \\ \tilde{x}_S & X_S \end{matrix} \right] \succeq 0, \quad X_{ii} \leq \tilde{x}_i \ \forall i \in S \end{array} \right.$$

Cut selection from nD-SDP sub-problems at given \tilde{x}

Generate outer-approximate hyperplanes for each *n*D-SDP

$$\forall S \in \mathcal{P}_n: \quad f_S(X_S^* | \tilde{x}_S) = \min_{X_S} Q_S \cdot X_S,$$
s.t.
$$\begin{bmatrix} 1 & \tilde{x}_S^T \\ \tilde{x}_S & X_S \end{bmatrix} \succeq 0, \quad X_{ii} \leq \tilde{x}_i \ \forall i \in S$$

(Given n, S, parametric on $Q_S, \tilde{x_S}$)

Combinatorial explosion!

sub-problems = $\binom{N}{n}$, need quick optimal selection of a few sub-problems for generating hyperplanes

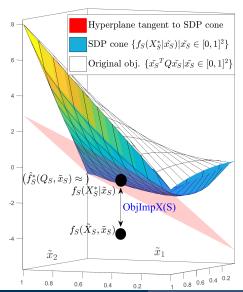
Selection of *n*D-SDP sub-problems to cut

- Assume current sol. \tilde{X}, \tilde{x} with S sub-problem objective $f_S(\tilde{X_S}, \tilde{x_S})$
- Order/select top S (to cut off \tilde{X}, \tilde{x} via \tilde{X}_S, \tilde{x}_S) by estimated objective improvement on X, ObjImpX(S):

$$\begin{pmatrix}
f_{S}(X_{S}^{*}|\tilde{x}_{S}) - f_{S}(\tilde{X}_{S}, \tilde{x}_{S}) \approx \\
\hat{f}_{S}^{*}(Q_{S}, \tilde{x}_{S}) - f_{S}(\tilde{X}_{S}, \tilde{x}_{S}) = \hat{f}_{S}^{*}(Q_{S}, \tilde{x}_{S}) - Q_{S} \cdot \tilde{X}_{S},
\end{pmatrix} (\text{ObjImpX(S)})$$

where $\hat{f}_S^*(Q_S, \tilde{x}_S)$ is a **fast estimator** of $f_S^*(\tilde{x}_S, X_S^*)$.

Generating cutting hyperplanes at given \tilde{X}_S , \tilde{x}_S for one nD-SDP sub-problem



Generating hyperplanes

- Could generate separating hyperplane tangent to SDP cone.
- In practice, generate cuts from negative eigenvalues,
 Qualizza et al. [2012]:

$$v_k^T \begin{bmatrix} 1 & \tilde{x}_S^T \\ \tilde{x}_S & X_S \end{bmatrix} v_k = v_k^T \lambda_k v_k = \lambda_k < 0.$$

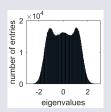
Data for learning estimator $\hat{f}_S^*(Q_S, \tilde{x}_S)$

Estimator only as good as data is sampled

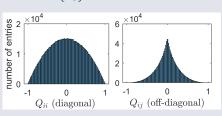
- Critical that sample space $\{Q_S, \tilde{x}_S\}$ is uniform in important features for any learner to generalize well
- Features: \tilde{x}_S (positioning), eigenvalues $\{\lambda_i\}$ of Q_S (positive definiteness)

Data sampling

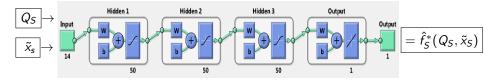
- Uniform $\tilde{x}_S \in [0,1]^n$
- Uniform Qs elements



• Uniform $\{\lambda_i\}$ and orthonormal basis



Neural network as estimator $\hat{f}_S^*(Q_S, \tilde{x}_S)$



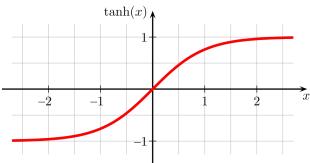
Why neural nets?

- \bullet \hat{f}_S^* is a **nonlinear regression** mapping (collection of convex surfaces)
- Neural nets (NN): regression via trained hidden layers, no need to specify model
- ullet Flexible model + lots of well sampled data pprox low variance and bias

Architecture (for 3-5D cases)

- 3-4 hidden layers with 50-64 neurons
- tanh activation (well-scaled with our data) in hidden layers
- Trained by 5-fold cross-validation on 1M data pts. with scaled conjugate gradient
- Early stop on low gradient (10⁻⁵)

Engineering Non-linear activation function



Non-linear activation function in the hidden layers

Hyperbolic tangent (tanh) vs. Rectified linear unit (ReLU):

- tanh faster to train,
- tanh has a bounded output of [-1, 1],
- ullet tanh has a significantly positive derivative on the domain [-4,4],
- tanh is symmetric around 0.

Are the domain and co-domain bounds okay?

Lemma. If all eigenvalues of a square matrix M are bounded within [-m, m] then any element in M is bounded within [-m, m].

Let $M \in \mathbb{R}^{n \times n}$ with eigenvalues and eigenvectors λ_i and v_i for $\forall i \in \overline{1, n}$, and let v_{ij} be the j-th element of v_i . Then the absolute value of element M_{ij} on the i-th row and j-th column can be expressed as:

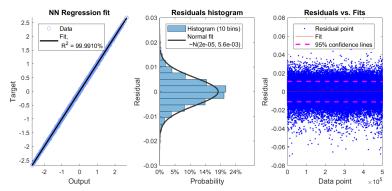
$$|M_{ij}| = \left| \sum_{k \in \overline{1,n}} v_{ki} v_{jk} \lambda_k \right|$$

$$\leq \sum_{k \in \overline{1,n}} |v_{ki} v_{jk}| \cdot |\lambda_k|$$

$$\leq \sum_{k \in \overline{1,n}} ((v_{ki}^2 + v_{jk}^2)/2) \cdot |\lambda_k|$$

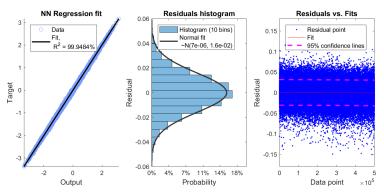
$$\leq \sum_{k \in \overline{1,n}} ((v_{ki}^2 + v_{jk}^2)/2) m = m$$

Neural network training (3D case) - Results on .5M test set



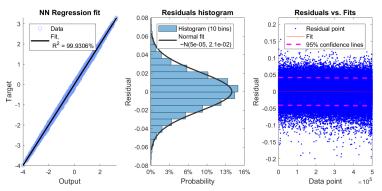
3D-SDP trained NN (9 inputs layer + 3 hidden layers \times 50 neurons)

Neural network training (4D case) - Results on .5M test set



4D-SDP trained NN (14 inputs layer + 3 hidden layers \times 64 neurons)

Neural network training (5D case) - Results on .5M test set



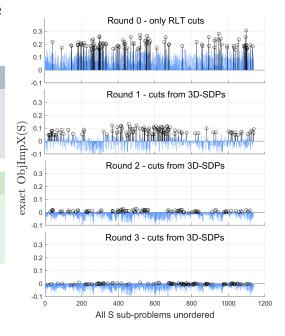
5D-SDP trained NN (20 inputs layer + 4 hidden layers x 64 neurons)

Cut selection in practice

BoxQP spar020-100-1

 4 rounds of cuts, n = 3, 100 S sub-problems selected by ObjImpX(S) (black lines)

Better bound by few cuts



Cut selection in practice

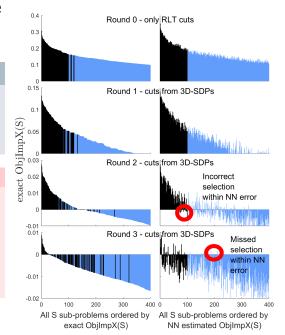
BoxQP spar020-100-1

 4 rounds of cuts, n = 3, 100 S sub-problems selected by ObjImpX(S) (black lines)

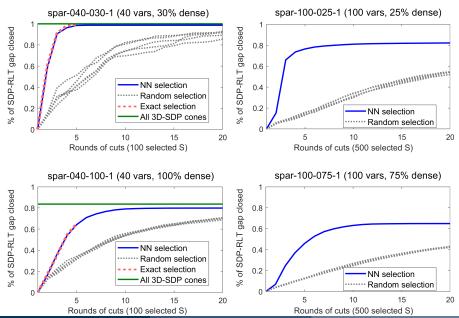
Limits - NN error

After a few rounds, as $ObjImpX(S) \searrow NN$ error:

- Incorrect selection of S where ObjImpX(S) < 0
- Missed selection of S where ObjImpX(S) > 0



Results for different problem sizes/densities (n = 3)



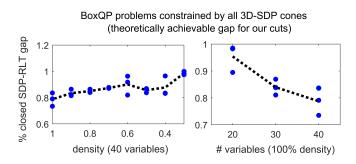
Conclusion

Pluses

- Offline cut selection
- Good bounds with few low-dimensional linear cuts
- Easily integrate SDP-based linear cuts with other cut classes in Branch&Cut

Minuses

- Weaker bounds then full SDP or convex-based relaxations
- Best complemented by other linear cutting planes (e.g. RLT-based)
- Limited to low-dimensionality cuts



References I

- Anstreicher. Semidefinite programming versus the reformulation linearization technique for nonconvex quadratically constrained quadratic programming. *J Glob Optim*, 43(2-3):471, 2009.
- Bao, Sahinidis, and Tawarmalani. Multiterm polyhedral relaxations for nonconvex, quadratically constrained quadratic programs. *Optim Met Softw*, 24(4-5):485, 2009.
- Bao, Sahinidis, and Tawarmalani. Semidefinite relaxations for quadratically constrained quadratic programming: A review and comparisons. *Math Prog*, 129(1):129, 2011.
- Bonami, Günlük, and Linderoth. Solving box-constrained nonconvex quadratic programs. 2016.
- Buchheim and Wiegele. Semidefinite relaxations for non-convex quadratic mixed-integer programming. *Math Prog*, 141(1-2):435, 2013.
- Chen and Burer. Globally solving nonconvex quadratic programming problems via completely positive programming. *Math Prog Comput*, 4(1):33, 2012.

References II

- Dong. Relaxing nonconvex quadratic functions by multiple adaptive diagonal perturbations. *SIAM J Optim*, 26(3):1962, 2016.
- Misener and Floudas. Global optimization of mixed integer quadratically constrained quadratic programs (MIQCQP) through piecewise linear and edge-concave relaxations. *Math Prog B*, 136:155, 2012.
- Qualizza, Belotti, and Margot. Linear programming relaxations of quadratically constrained quadratic programs. In Lee and Leyffer, editors, *Mixed Integer Nonlinear Programming*, page 407. 2012.
- Saxena, Bonami, and Lee. Convex relaxations of non-convex mixed integer quadratically constrained programs: Projected formulations. *Math Prog*, 130: 359, 2011.
- Sherali and Fraticelli. Enhancing RLT relaxations via a new class of semidefinite cuts. *J Glob Optim*, 22(1-4):233, 2002.
- Zheng, Sun, and Li. Convex relaxations for nonconvex quadratically constrained quadratic programming: matrix cone decomposition and polyhedral approximation. *Math Prog*, 129(2):301, 2011.