
PySCIPOpt Exercise: Capacitated Facility

Location

Gregor Hendel, Franziska Schlösser, Felipe Serrano

March 6, 2018

1 Overview

Facility Location is an entire area of different optimization problems. In this
exercise, we consider the well-studied, capacitated variant.

Capacitated facility location denotes the task of connecting customers to
facilities in an optimal way, minimizing both the opening costs of the involved
facilities and the costs to serve the clients.

More mathematically, let I be the set of customers and J be the set of
(potential) facilities. In addition, we use

• d : I → R+ the demand of each customer

• M : J → R+ the capacity of each facility

• f : J → R+ the opening costs of a facility

• c : I × J → R+ the unit costs of connecting a customer and a facility.

With those prerequisites, a mixed integer formulation of the capacitated
facility location is

min
∑
j∈J

f(j)yj +
∑
i∈I

c(i, j)xi,j

s.t.
∑
j∈J

xi,j = d(i) ∀i ∈ I

∑
i∈I

xi,j ≤M(j)yj ∀j ∈ J

yj ∈ {0, 1} ∀j ∈ J

xi,j ≥ 0 ∀i ∈ I, ∀j ∈ J

(1)

2 Model

2.1 Basic Model creation

All of the necessary code for this exercise goes into the single file ”flp.py”. The
file already contains the function signature

1



def flp(I, J, d, M, f, c):
""" flp -- model for the capacitated facility location problem
Parameters :

- I: set of customers
- J: set of facilities
- d[i]: demand for customer i
- M[j]: capacity of facility j
- f[j]: fixed cost for using a facility in point j
- c[i,j]: unit cost of servicing demand point i from facility j

Returns a model , ready to be solved.
"""

All the necessary input data necessary input data are passed as arguments to
this function, which should finally declare and return the optimization problem
to the script. The following steps are necessary to model the capacitated facility
location:

1. creating a new model using the function Model.

2. creating variables using the model.addVar() function. It is good practice
to store the variables in dictionaries y and x indexed by the facilities and
the edges i, j, respectively.

y["myvar"] = model.addVar(vtype = "B", name = "variable_one")

Objective coefficients are passed by setting the objective function later.

3. creating both types of linear constraints, the demand satisfaction and the
capacity restrictions, can be done by using the function model.addCons().
Constraints are added as linear or nonlinear expressions of the variables.

model.addCons(v + 3 * w + 4 * t <= 6, "example_cons")

In this example, all v, t, and w should be variables that have been previ-
ously added with addVar().

It is good practice to wrap these expressions into the quicksum function of
PySCIPOpt. The quicksum function would be useless if it did not accept
Python list comprehensions.

model.addCons(quicksum (10 * t for t in [u,v,w]) <= 15)

4. Use the function model.setObjective() to set the objective function.
This function accepts expressions using quicksum exactly like addCons.

5. return the resulting model. The data attribute is used for plotting and
the heuristic of the next exercise

2.2 Running the basic model

Run the model by executing python flp.py. You see the log output of SCIP.
What is the number of open facilities in the optimal solution? What are its
total costs? How many nodes does SCIP need to optimize this problem? If you
have the python package networkx installed, a graphical display should open
and render the solution as a graph.

2



2.3 Extending the model

The initial LP relaxation can be made stronger. As a matter of fact, one can
easily formulate upper bounds the x variables. Infact, because of the nonneg-
ative costs, none of the x variables will exceed the demand of its associated
customer. Infact, one can even make this stronger: xi,j ≤ d(i, j)yj for all i ∈ I
and j ∈ J . Such inequalities are also called variable bound inequalities in SCIP
as the upper bound of xi,j varies with the values of the yj ’s.

Add these additional inequalities to the model. By how much does the value
of the initial root LP relaxation change by the tighter formulation?

else: accepted = False

3 Heuristic

After the modeling has been finished, it is a natural second step to customize
the solution process to the model at hand. SCIP’s plugin based system allows
for extensions to all main components of the solution process. For the sake of
this exercise, we extend the primal heuristics of SCIP by an additional greedy
heuristic.

The file ”flp.py” already contains the class GreedyHeur with a functional,
yet empty class method heurexec. The greedy algorithm should be completely
implemented within this method. The heuristic has already been added (in-
cluded) to the model object, such that calling optimize triggers the execution of
the greedy heuristic at the specified timing, i.e., every time a search node has
been selected, but not processed yet.

class GreedyHeur(Heur):

def heurexec(self , heurtiming , nodeinfeasible ):
""" execution callback of the greedy heuristic

Parameters :
-self: the heuristic itself , with the FLP model as attribute
-heurtiming : timing during the search process
-nodeinfeasible : flag to indicate whether this node is already infeasible .
"""

if nodeinfeasible:
return {"result" : SCIP_DIDNOTRUN}

sol = self.model.createSol(self)
x, y, M, d, c, I = self.model.data

if False:
accepted = self.model.trySol(sol)

else:
accepted = False

if accepted:
return {"result": SCIP_RESULT.FOUNDSOL}

else:
return {"result": SCIP_RESULT.DIDNOTFIND}

if __name__ == "__main__":
I, J, d, M, f, c = make_data ()
model = flp(I, J, d, M, f, c)
model.includeHeur(GreedyHeur (),

"greedyfacility",
"greedy heuristic for capacitated facility location",
"Y",
timingmask = SCIP_HEURTIMING.BEFORENODE)

3



We suggest to implement a primal heuristic that implements the following
simple greedy procedure.

1. Select the facility j∗ ∈ J that provides the highest capacity/cost ratio.

2. Set yj∗ = 1.

3. Choose a customer i∗ with some residual demand with the cheapest con-
nection cost ci∗,j∗ .

4. Set xi∗,j∗ = min{d(i∗),M(j∗)}

5. Repeat 3. and 4. until j∗ is saturated, or no customer is left.

6. Remove j∗ from the set of facilities.

7. Go to 1.

Task Implement the algorithm, and comment on its success.

Hints

• all necessary data has already been unpacked from the model data object.
This need not be modified.

• The function for setting solution values is model.setSolVal(sol, var,

value) The sol object has already been created for you

• You may encounter output that reports a violated constraint or variable
bound. This violation output is expected for this heuristic, but does not
render the solving process infeasible. Can you think of a reason why this
output appears?

Extension The heuristic is included with a heuristic frequency of 1, which
means that it is run at every node of the search. The algorithm does not use
local information, yet. Hence, the greedy procedure is the same at every node.
You may consider local bounds for the yj variables to split the facilities into the
subsets of open, closed, and undecided facilities. Therefore, you need to query
the local lower and upper bounds of the variables. The respective methods are
var.getLbLocal() and var.getUbLocal(). How do you use this information
to modify the algorithm?

4


