Investigating Mixed-Integer Hulls using a MIP-Solver

Matthias Walter Otto-von-Guericke Universität Magdeburg

Joint work with Volker Kaibel (OvGU)

SCIP Workshop, Berlin, 2014

- Polyhedral Combinatorics
 - Introduction
 - Usual Approach
 - Limitations
- 2 Vision
- 3 Affine Hull
- 4 Facets
 - Polarity
 - 2 Algorithm
- Minimizing the 1-Norm of Basis Vectors
 - Problem
 - 2 Vectors: Exact Approach
 - 3 2 Vectors: Heuristic Approach

Problems in Question

We consider mixed-integer programs with rational data:

$$\max \langle c, x \rangle$$

s.t.

$$Ax \leq b$$

$$Cx = d$$

$$x_i \in \mathbb{Z}$$

$$\forall i \in I \subseteq [n]$$

Problems in Question

We consider mixed-integer programs with rational data:

$$\max \langle c, x \rangle$$
 s.t.
$$Ax \leq b$$

$$Cx = d$$

$$x_i \in \mathbb{Z} \qquad \forall i \in I \subseteq [n]$$

Denote by $R = \{x \in \mathbb{R}^n : Ax \le b, Cx = d\}$ the relaxation polyhedron and by $P = \text{conv.hull } \{x \in R : x_i \in \mathbb{Z} \ \forall i \in I\}$ the mixed-integer hull.

Problems in Question

We consider mixed-integer programs with rational data:

$$\max \langle c, x \rangle$$
 s.t.
$$Ax \leq b$$

$$Cx = d$$

$$x_i \in \mathbb{Z} \qquad \forall i \in I \subseteq [n]$$

Denote by $R = \{x \in \mathbb{R}^n : Ax \le b, Cx = d\}$ the relaxation polyhedron and by $P = \text{conv.hull } \{x \in R : x_i \in \mathbb{Z} \ \forall i \in I\}$ the mixed-integer hull.

Facts

- P is a polyhedron again.
- For most (e.g., NP-hard) problems, P has many facets.
- ▶ Nevertheless, MIP-solvers are really fast these days.

Another Fact

The time a MIP-solver needs for solving depends on the strength of the relaxation, i.e., how well P is approximated by R.

Polyhedral Combinatorics

Polyhedral Comb. Vision Affine Hull Facets Min 1-Norm Final Slide

Another Fact

The time a MIP-solver needs for solving depends on the strength of the relaxation, i.e., how well P is approximated by R.

Strengthening a Relaxation

- ▶ Generic cutting planes: GMI, MIR, CG, Lift & Project, ...
- ▶ Problem-specific inequalities: Problem-dependent

Another Fact

The time a MIP-solver needs for solving depends on the strength of the relaxation, i.e., how well P is approximated by R.

Strengthening a Relaxation

- ▶ Generic cutting planes: GMI, MIR, CG, Lift & Project, . . .
- Problem-specific inequalities: Problem-dependent

Goals of Polyhedral Combinatorics

Given a MIP-model for a problem,

- find inequalities valid for P (but not for R),
- develop algorithms (exact or heuristics) to separate these inequalities if there are too many,
- b determine the dimension of P, i.e., find valid equations,
- ▶ and prove if/when the inequalities define facets of *P*.

Polyhedral Comb. Affine Hull Facets Min 1-Norm Final Slide Usual Approach for IPs

Step 1: Find all feasible points

- (a) By hand / handcrafted software
- (b) Some tool, e.g. PORTA's vint functionality or azove

Usual Approach for IPs

Polyhedral Comb. Vision Affine Hull Facets Min 1-Norm Final Slide

OO OO OOO OOO OOO OOO

Step 1: Find all feasible points

- (a) By hand / handcrafted software
- (b) Some tool, e.g. PORTA's vint functionality or azove

Step 2: Compute Outer Description

There are quite a few tools (PORTA, Polymake, azove) and several algorithms:

- ► The Beneath-and-Beyond method
- ▶ The Double-Description method
- ► Lexicographic Reverse Search
- Pyramid decomposition (mixture of beneath-and-beyond and Fourier-Motzkin)

Step 1: Find all feasible points

- (a) By hand / handcrafted software
- (b) Some tool, e.g. PORTA's vint functionality or azove

Step 2: Compute Outer Description

There are quite a few tools (PORTA, Polymake, azove) and several algorithms:

- ► The Beneath-and-Beyond method
- The Double-Description method
- Lexicographic Reverse Search
- Pyramid decomposition (mixture of beneath-and-beyond and Fourier-Motzkin)

Step 3: Generalize Inequalities

There's only one main tool here: The mathematician.

Memory and Time

The dominant of the cut polytope (corresponds to MinCut problem) has among others a facet per disjoint union of cycles joined together by any spanning tree!

ALEVRAS ('99) enumerated the facets for this polyhedron for the complete graph on 8 nodes, including 2 billions of the above type.

Memory and Time

The dominant of the cut polytope (corresponds to MinCut problem) has among others a facet per disjoint union of cycles joined together by any spanning tree!

 $\rm ALEVRAS$ ('99) enumerated the facets for this polyhedron for the complete graph on 8 nodes, including 2 billions of the above type.

Continuous Variables

The mixed-integer case is usually harder for enumeration tools.

Memory and Time

The dominant of the cut polytope (corresponds to MinCut problem) has among others a facet per disjoint union of cycles joined together by any spanning tree!

ALEVRAS ('99) enumerated the facets for this polyhedron for the complete graph on 8 nodes, including 2 billions of the above type.

Continuous Variables

The mixed-integer case is usually harder for enumeration tools.

Symmetry

Often, facets have a lot of symmetry. It's not clear how one can use it to speed up enumeration.

Memory and Time

The dominant of the cut polytope (corresponds to MinCut problem) has among others a facet per disjoint union of cycles joined together by any spanning tree!

ALEVRAS ('99) enumerated the facets for this polyhedron for the complete graph on 8 nodes, including 2 billions of the above type.

Continuous Variables

The mixed-integer case is usually harder for enumeration tools.

Symmetry

Often, facets have a lot of symmetry. It's not clear how one can use it to speed up enumeration.

Specific Objective Functions

Which are the facets useful when optimizing specific objective functions?

PORTA & friends need "a moment" for a 50-dimensional polytope, while a MIP with 50 variables is solved within a second!

Fact Reminder

PORTA & friends need "a moment" for a 50-dimensional polytope, while a MIP with 50 variables is solved within a second!

Goal of this work:

Use MIP-solvers to determine facets!

Polyhedral Comb. Vision Affine Hull Facets Min 1-Norm Final Slide Assumptions

Definition (Stable MIP-oracle)

A MIP-oracle is an oracle which (repeatedly) solves a certain MIP for arbitrary objective functions.

Definition (Stable MIP-oracle)

A MIP-oracle is an oracle which (repeatedly) solves a certain MIP for arbitrary objective functions.

We call a MIP-oracle stable if all reported solutions are correct after replacing the floating-point numbers by the best approximation w.r.t. to given tolerances.

Note: A rational number p/q with $p, q \in \mathbb{Z}$ is a best approximation for $x \in \mathbb{R}$ if $|x - p/q| \le |x - p'/q'|$ holds for all $p', q' \in \mathbb{Z}$ with $q' \le q$.

Definition (Stable MIP-oracle)

A MIP-oracle is an oracle which (repeatedly) solves a certain MIP for arbitrary objective functions.

We call a MIP-oracle stable if all reported solutions are correct after replacing the floating-point numbers by the best approximation w.r.t. to given tolerances.

Note: A rational number p/q with $p,q\in\mathbb{Z}$ is a best approximation for $x\in\mathbb{R}$ if $|x-p/q|\leq |x-p'/q'|$ holds for all $p',q'\in\mathbb{Z}$ with $q'\leq q$.

Remark

Note that such an oracle is a weaker requirement than a MIP formulation itself since separation of constraints is allowed.

Matthias Walter

Definition (Stable MIP-oracle)

A MIP-oracle is an oracle which (repeatedly) solves a certain MIP for arbitrary objective functions.

We call a MIP-oracle stable if all reported solutions are correct after replacing the floating-point numbers by the best approximation w.r.t. to given tolerances.

Note: A rational number p/q with $p,q\in\mathbb{Z}$ is a best approximation for $x\in\mathbb{R}$ if $|x-p/q|\leq |x-p'/q'|$ holds for all $p',q'\in\mathbb{Z}$ with $q'\leq q$.

Remark

Note that such an oracle is a weaker requirement than a MIP formulation itself since separation of constraints is allowed.

Question: How does such an oracle look like in practice?

Definition (Stable MIP-oracle)

A MIP-oracle is an oracle which (repeatedly) solves a certain MIP for arbitrary objective functions.

We call a MIP-oracle stable if all reported solutions are correct after replacing the floating-point numbers by the best approximation w.r.t. to given tolerances.

Note: A rational number p/q with $p,q\in\mathbb{Z}$ is a best approximation for $x\in\mathbb{R}$ if $|x-p/q|\leq |x-p'/q'|$ holds for all $p',q'\in\mathbb{Z}$ with $q'\leq q$.

Remark

Note that such an oracle is a weaker requirement than a MIP formulation itself since separation of constraints is allowed.

Question: How does such an oracle look like in practice? Answer: SCIP* and some luck with the numerics!

Computing the Affine Hull

Polyhedral Comb. Vision Affine Hull Facets Min 1-Norm Final Slide

Input:

▶ Stable MIP-oracle which can optimize over $\emptyset \neq P \subseteq \mathbb{R}^n$.

▶ Stable MIP-oracle which can optimize over $\emptyset \neq P \subseteq \mathbb{R}^n$.

Output:

- Dimension of P
- \blacktriangleright (dim(P) + 1)-many affinely independent points in P
- $(n \dim(P))$ -many irredundant equations Cx = d valid for P

▶ Stable MIP-oracle which can optimize over $\emptyset \neq P \subseteq \mathbb{R}^n$.

Output:

- Dimension of P
- \blacktriangleright $(\dim(P) + 1)$ -many affinely independent points in P
- $(n \dim(P))$ -many irredundant equations Cx = d valid for P

- **1** Maintain known equations Cx = d and points $x_1, x_2, \dots, x_\ell \subseteq P$.
- Let A be matrix C with additional rows $x_i x_1$ for $i = 2, ..., \ell$.

▶ Stable MIP-oracle which can optimize over $\emptyset \neq P \subseteq \mathbb{R}^n$.

Output:

- Dimension of P
- \blacktriangleright (dim(P) + 1)-many affinely independent points in P
- $(n \dim(P))$ -many irredundant equations Cx = d valid for P

- Maintain known equations Cx = d and points $x_1, x_2, \ldots, x_\ell \subseteq P$.
- Let A be matrix C with additional rows $x_i x_1$ for $i = 2, ..., \ell$.
- While rank A < n do:
 - 1 Let $\{c_1, \ldots, c_t\}$ be a basis of ker A.

▶ Stable MIP-oracle which can optimize over $\emptyset \neq P \subseteq \mathbb{R}^n$.

Output:

- Dimension of P
- $(\dim(P) + 1)$ -many affinely independent points in P
- $(n \dim(P))$ -many irredundant equations Cx = d valid for P

- Maintain known equations Cx = d and points $x_1, x_2, \ldots, x_\ell \subseteq P$.
- Let A be matrix C with additional rows $x_i x_1$ for $i = 2, \dots, \ell$.
- While rank A < n do:
 - 1 Let $\{c_1, \ldots, c_t\}$ be a basis of ker A.
 - For all $i \in [t]$ do:
 - Compute an optimal solution q_i by maximizing c_i over P. If $\langle c, q_i \rangle > \langle c, x_1 \rangle$, add $x_{\ell+1} := q_i$, add row $x_{\ell+1} - x_1$ to A, and increment ℓ .
 - Otherwise, compute an optimal solution q'_i by minimizing c_i over P. If $\langle c, q'_i \rangle < \langle c, x_1 \rangle$, add $x_{\ell+1} := q'_i$, add row $x_{\ell+1} - x_1$ to A, and increment ℓ .

▶ Stable MIP-oracle which can optimize over $\emptyset \neq P \subseteq \mathbb{R}^n$.

Output:

- Dimension of P
- \blacktriangleright $(\dim(P) + 1)$ -many affinely independent points in P
- $(n \dim(P))$ -many irredundant equations Cx = d valid for P

- **1** Maintain known equations Cx = d and points $x_1, x_2, \ldots, x_\ell \subseteq P$.
- Let A be matrix C with additional rows $x_i x_1$ for $i = 2, ..., \ell$.
- **3** While rank A < n do:
 - Let $\{c_1, \ldots, c_t\}$ be a basis of ker A.
 - **2** For all $i \in [t]$ do:
 - **1** Compute an optimal solution q_i by maximizing c_i over P.
 - If $\langle c, q_i \rangle > \langle c, x_1 \rangle$, add $x_{\ell+1} := q_i$, add row $x_{\ell+1} x_1$ to A, and increment ℓ .
 - Otherwise, compute an optimal solution q_i' by minimizing c_i over P. If $\langle c, q_i' \rangle < \langle c, x_1 \rangle$, add $x_{\ell+1} := q_i'$, add row $x_{\ell+1} x_1$ to A, and increment ℓ .
 - Otherwise, $\langle c, x \rangle = \langle c, x_1 \rangle$ defines a valid equation for P and hence can be added to Cx = d. Add row c to A

Computing the Affine Hull (cont.)

Polyhedral Comb. Vision Affine Hull Facets Min 1-Norm Final Slide

Remark

- We can initialize Cx = g with equations from LP relaxation.
- Optimizing in unit directions is cheap but yields few points.
- Optimizing in random directions is expensive and results in more points.

Computing the Affine Hull (cont.)

Remark

- We can initialize Cx = g with equations from LP relaxation.
- Optimizing in unit directions is cheap but yields few points.
- Detimizing in random directions is expensive and results in more points.

What is so special about x_1 in $x_i - x_1$ for $i = 2, ..., \ell$?

Computing the Affine Hull (cont.)

Remark

- We can initialize Cx = g with equations from LP relaxation.
- ▶ Optimizing in unit directions is cheap but yields few points.
- Optimizing in random directions is expensive and results in more points.

What is so special about x_1 in $x_i - x_1$ for $i = 2, ..., \ell$?

Lemma

The rank of all matrices with rows $\{x_i - x_j : \{i, j\} \in T\}$ is constant over all edge sets T which span the node set $\lfloor \ell \rfloor$.

Computing the Affine Hull (cont.)

Polyhedral Comb. Vision Affine Hull Facets Min 1-Norm Final Slide

Remark

- We can initialize Cx = g with equations from LP relaxation.
- Optimizing in unit directions is cheap but yields few points.
- Optimizing in random directions is expensive and results in more points.

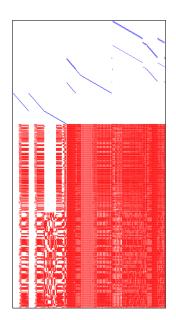
What is so special about x_1 in $x_i - x_1$ for $i = 2, ..., \ell$?

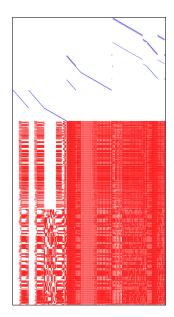
Lemma

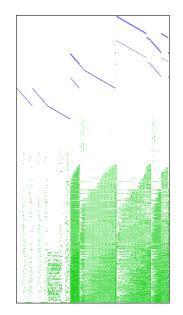
The rank of all matrices with rows $\{x_i - x_j : \{i, j\} \in T\}$ is constant over all edge sets T which span the node set $[\ell]$.

Application

Instead of the rows $x_i - x_1$ for $i = 2, ..., \ell$, we use $x_i - x_j$ for all minimum spanning tree edges $\{i, j\}$ where the weights are the number of nonzeros of $x_i - x_j$. This leads to a sparse (but equivalent) matrix A.







Definition

Let $P \subseteq \mathbb{R}^n$ be a polyhedron with \mathbb{O}_n in its relative interior. Then the set

$$\{y \in \mathbb{R}^n : \langle y, x \rangle \le 1 \ \forall x \in P\}$$

is called the polar dual of P.

Definition

Let $P \subseteq \mathbb{R}^n$ be a polyhedron with \mathbb{O}_n in its relative interior. Then the set

$$\{y \in \mathbb{R}^n : \langle y, x \rangle \le 1 \ \forall x \in P\}$$

is called the polar dual of P.

Since the polar dual has a lineality space if P is not full-dimensional, let

$$P^* := \{ y \in \mathsf{aff.hull}(P) : \langle y, x \rangle \le 1 \ \forall x \in P \} \ .$$

denote the truncated polar dual of P.

Definition

Let $P \subseteq \mathbb{R}^n$ be a polyhedron with \mathbb{O}_n in its relative interior. Then the set

$$\{y \in \mathbb{R}^n : \langle y, x \rangle \le 1 \ \forall x \in P\}$$

is called the polar dual of P.

Since the polar dual has a lineality space if P is not full-dimensional, let

$$P^* := \{ y \in \text{aff.hull}(P) : \langle y, x \rangle \le 1 \ \forall x \in P \}$$
.

denote the truncated polar dual of P.

Proposition (see Schrijver '86)

- $(P^*)^* = P$
- ▶ x is a point in (vertex of) P if and only if $\langle x, y \rangle \leq 1$ defines an inequality for (facet of) P^* .
- ▶ P* is bounded if and only if P contains in its relative interior.

...once

We are given a point $\hat{x} \in R \setminus P$. Find a facet $\langle y, x \rangle \leq 1$ of P cutting off \hat{x} !

Suppose \bigcirc is in the relative interior of P.

. . . once

We are given a point $\hat{x} \in R \setminus P$. Find a facet $\langle y, x \rangle \leq 1$ of P cutting off \hat{x} ! $\langle y, x \rangle \leq 1$ is a facet of P and $\langle y, \hat{x} \rangle > 1$ \iff y is a vertex of P^* and $\langle \hat{x}, y \rangle > 1$

Suppose \bigcirc is in the relative interior of P.

. . . once

We are given a point $\hat{x} \in R \setminus P$. Find a facet $\langle y, x \rangle \leq 1$ of P cutting off \hat{x} ! $\langle y, x \rangle < 1$ is a facet of P and $\langle y, \hat{x} \rangle > 1$

 \iff y is a vertex of P^* and $\langle \hat{x}, y \rangle > 1$

Hence, such a y can be found by maximizing \hat{x} over P^* .

Using Polarity . . .

Suppose \bigcirc is in the relative interior of P.

. . . once

We are given a point $\hat{x} \in R \setminus P$. Find a facet $\langle y, x \rangle \leq 1$ of P cutting off \hat{x} ! $\langle y, x \rangle \leq 1$ is a facet of P and $\langle y, \hat{x} \rangle > 1$ \iff y is a vertex of P^* and $\langle \hat{x}, y \rangle > 1$

Hence, such a y can be found by maximizing \hat{x} over P^* .

...twice

We are given a point $\hat{y} \in \operatorname{aff.hull}(P^*) \setminus P^*$. Find an inequality $\langle x, y \rangle < 1$ valid for P^* cutting off \hat{y} !

Suppose \bigcirc is in the relative interior of P.

. . . once

We are given a point $\hat{x} \in R \setminus P$. Find a facet $\langle y, x \rangle \leq 1$ of P cutting off \hat{x} ! $\langle y, x \rangle \leq 1$ is a facet of P and $\langle y, \hat{x} \rangle > 1$

$$\iff$$
 y is a vertex of P^* and $\langle \hat{x}, y \rangle > 1$

Hence, such a ν can be found by maximizing \hat{x} over P^* .

...twice

We are given a point $\hat{y} \in \operatorname{aff.hull}(P^*) \setminus P^*$. Find an inequality $\langle x, y \rangle \leq 1$ valid for P^* cutting off \hat{y} !

$$\langle x,y \rangle \leq 1$$
 is an inequality of P^* and $\langle x,\hat{y} \rangle > 1$
 $\iff x$ is a point in P and $\langle x,\hat{y} \rangle > 1$

Suppose \bigcirc is in the relative interior of P.

. . . once

We are given a point $\hat{x} \in R \setminus P$. Find a facet $\langle y, x \rangle \leq 1$ of P cutting off \hat{x} ! $\langle y, x \rangle \leq 1$ is a facet of P and $\langle y, \hat{x} \rangle > 1$

 \iff y is a vertex of P^* and $\langle \hat{x}, y \rangle > 1$ Hence, such a ν can be found by maximizing \hat{x} over P^* .

...twice

We are given a point $\hat{y} \in \operatorname{aff.hull}(P^*) \setminus P^*$. Find an inequality $\langle x, y \rangle \leq 1$ valid for P^* cutting off \hat{y} !

$$\langle x,y\rangle \leq 1$$
 is an inequality of P^* and $\langle x,\hat{y}\rangle > 1$

$$\iff$$
 x is a point in P and $\langle x, \hat{y} \rangle > 1$

Hence, such an x can be found by maximizing \hat{y} over P.

Polyhedral Comb.

Affine Hull Facets Min 1-Norm Final Slide

Maximize ŷ over P via MIP-oracle.

- Maximize ŷ over P via MIP-oracle.
 - Every solution x defines an inequality valid for $(P o)^*$ and can be added to Q.

- Let $\Delta \subseteq P$ be a simplex in P of the same dimension, let o be its barycenter, and let Cx = d define aff.hull (P).
- Let R be any bounded relaxation of P and define $Q:=(\Delta-o)^*\supseteq (P-o)^*.$

- Maximize $\hat{\mathbf{v}}$ over \mathbf{P} via MIP-oracle.
- Every solution x defines an inequality valid for $(P o)^*$ and can be added to Q.

- Let $\Delta \subseteq P$ be a simplex in P of the same dimension, let o be its barycenter, and let Cx = d define aff.hull (P).
- Let R be any bounded relaxation of P and define $Q:=(\Delta-o)^*\supseteq (P-o)^*.$
 - Maximize $(\hat{x} o)$ over Q and let \hat{y} be an optimum.
 - While $\hat{y} \notin (P o)^*$ do:
 - Maximize \hat{y} over P via MIP-oracle.
 - 2 Every solution x defines an inequality valid for $(P-o)^*$ and can be added to Q.
 - Maximize $(\hat{x} o)$ over refined Q and let \hat{y} be an optimum.

Polyhedral Comb.

- Let $\Delta \subseteq P$ be a simplex in P of the same dimension, let o be its barycenter, and let Cx = d define aff.hull (P).
- Let R be any bounded relaxation of P and define $Q:=(\Delta-o)^*\supseteq (P-o)^*.$

- Maximize $(\hat{x} o)$ over Q and let \hat{y} be an optimum.
- While $\hat{y} \notin (P o)^*$ do:
 - Maximize $\hat{\mathbf{v}}$ over P via MIP-oracle.
 - 2 Every solution x defines an inequality valid for $(P-o)^*$ and can be added to Q.
 - Maximize $(\hat{x} o)$ over refined Q and let \hat{y} be an optimum.
- Every vertex solution \hat{y} defines a facet of P and can be added to R.

Polyhedral Comb.

- Let $\triangle \subseteq P$ be a simplex in P of the same dimension, let o be its barycenter, and let Cx = d define aff.hull (P).
- Let R be any bounded relaxation of P and define $Q:=(\Delta-o)^*\supseteq (P-o)^*.$
- Maximize c over R and let \hat{x} be an optimum.
- While $\hat{x} \notin P$ do:
 - Maximize $(\hat{x} o)$ over Q and let \hat{y} be an optimum.
 - While $\hat{y} \notin (P o)^*$ do:
 - Maximize $\hat{\mathbf{v}}$ over \mathbf{P} via MIP-oracle.
 - 2 Every solution x defines an inequality valid for $(P-o)^*$ and can be added to Q.
 - Maximize $(\hat{x} o)$ over refined Q and let \hat{y} be an optimum.
 - Every vertex solution \hat{y} defines a facet of P and can be added to R.
 - Maximize c over refined R and let \hat{x} be an optimum.

- Let $\Delta \subseteq P$ be a simplex in P of the same dimension, let o be its barycenter, and let Cx = d define aff.hull (P).
- Let R be any bounded relaxation of P and define $Q := (\Delta - o)^* \supset (P - o)^*$
- Maximize c over R and let \hat{x} be an optimum.
- While $\hat{x} \notin P$ do:
 - Maximize $(\hat{x} o)$ over Q and let \hat{y} be an optimum.
 - While $\hat{y} \notin (P o)^*$ do:
 - Maximize ŷ over P via MIP-oracle.
 - 2 Every solution x defines an inequality valid for $(P-o)^*$ and can be added to Q.
 - Maximize $(\hat{x} o)$ over refined Q and let \hat{y} be an optimum.
 - Every vertex solution \hat{y} defines a facet of P and can be added to R.
 - Maximize c over refined R and let \hat{x} be an optimum.

Very related work: Target Cuts by BUCHHEIM, LIERS & OSWALD, '08

1-Norm Minimization

Polyhedral Comb. Vision Affine Hull Facets Min 1-Norm Final Slide

Motivation

- ► Readability of produced equations & facets!

1-Norm Minimization

Polyhedral Comb. Vision Affine Hull Facets Min 1-Norm Final Slide

Motivation

- ▶ Readability of produced equations & facets!
- ▶ $\langle a, x \rangle \leq \beta$ with $a \in \mathbb{Z}^n$ and $\beta \in \mathbb{Z}$ where (a^T, β) is a primitive vector.
- ▶ If $\dim(P) \neq n$, facet representations are not unique and equation normals are an arbitrary basis of aff.hull $(P)^{\perp}$.

1-Norm Minimization

Polyhedral Comb. Vision Affine Hull Facets Min 1-Norm Final Slide

Motivation

- Readability of produced equations & facets!
- \blacktriangleright $\langle a, x \rangle \leq \beta$ with $a \in \mathbb{Z}^n$ and $\beta \in \mathbb{Z}$ where (a^T, β) is a primitive vector.
- ▶ If $\dim(P) \neq n$, facet representations are not unique and equation normals are an arbitrary basis of aff.hull $(P)^{\perp}$.

Goal: Consider pairs of vectors and replace one by a nice linear combination.

Motivation

- ▶ Readability of produced equations & facets!
- \blacktriangleright $\langle a, x \rangle \leq \beta$ with $a \in \mathbb{Z}^n$ and $\beta \in \mathbb{Z}$ where (a^T, β) is a primitive vector.
- ▶ If $\dim(P) \neq n$, facet representations are not unique and equation normals are an arbitrary basis of aff.hull $(P)^{\perp}$.

Goal: Consider pairs of vectors and replace one by a nice linear combination.

Problem (1-Norm Minimization in Dimension Two)

Input are two linearly independent vectors $u, v \in \mathbb{Z}^n$.

Find $\lambda, \mu \in \mathbb{Q}$ with $\lambda \neq 0$ and $\lambda u + \mu v \in \mathbb{Z}^n$ minimizing $|\lambda u + \mu v|_1$.

Problem (1-Norm Minimization in Dimension Two)

Input are two linearly independent vectors $\mathbf{u}, \mathbf{v} \in \mathbb{Z}^n$. Find $\lambda, \mu \in \mathbb{Q}$ with $\lambda \neq 0$ and $\lambda \mathbf{u} + \mu \mathbf{v} \in \mathbb{Z}^n$ minimizing $|\lambda \mathbf{u} + \mu \mathbf{v}|_1$.

Lemma

By computing the Hermite-Normal-Form of $\binom{u^T}{v^T} \in \mathbb{Z}^{2 \times n}$, we can replace u, v by a lattice basis u', v' of $\lim (u, v) \cap \mathbb{Z}^n$...

Problem (1-Norm Minimization in Dimension Two)

Input are two linearly independent vectors $\mathbf{u}, \mathbf{v} \in \mathbb{Z}^n$. Find $\lambda, \mu \in \mathbb{Q}$ with $\lambda \neq 0$ and $\lambda \mathbf{u} + \mu \mathbf{v} \in \mathbb{Z}^n$ minimizing $|\lambda \mathbf{u} + \mu \mathbf{v}|_1$.

Lemma

By computing the Hermite-Normal-Form of $\begin{pmatrix} u^T \\ v^T \end{pmatrix} \in \mathbb{Z}^{2 \times n}$, we can replace u, v by a lattice basis u', v' of $\lim (u, v) \cap \mathbb{Z}^n \dots$... such that $\lambda u' + \mu v'$ is a multiple of u if and only if $\lambda = 0$. Input are two linearly independent vectors $u, v \in \mathbb{Z}^n$.

Find $\lambda, \mu \in \mathbb{Q}$ with $\lambda \neq 0$ and $\lambda u + \mu v \in \mathbb{Z}^n$ minimizing $|\lambda u + \mu v|_1$.

Lemma

By computing the Hermite-Normal-Form of $\begin{pmatrix} u^T \\ v^T \end{pmatrix} \in \mathbb{Z}^{2 \times n}$, we can replace u, vby a lattice basis u', v' of $\lim (u, v) \cap \mathbb{Z}^n \dots$

... such that $\lambda u' + \mu v'$ is a multiple of u if and only if $\lambda = 0$.

Problem (Restricted 1-Norm Minimization in Dimension Two)

Given a lattice basis $u, v \in \mathbb{Z}^n$, find $\lambda, \mu \in \mathbb{Z}$ with $\lambda > 0$ minimizing $|\lambda u + \mu v|_1$.

Given a lattice basis $u, v \in \mathbb{Z}^n$, find $\lambda, \mu \in \mathbb{Z}$ with $\lambda > 0$ minimizing $|\lambda u + \mu v|_1$.

Given a lattice basis $u, v \in \mathbb{Z}^n$, find $\lambda, \mu \in \mathbb{Z}$ with $\lambda > 0$ minimizing $|\lambda u + \mu v|_1$.

Let's consider all sign-patterns of $\lambda u + \mu v$ in order to resolve the 1-norm!

Given a lattice basis $u, v \in \mathbb{Z}^n$, find $\lambda, \mu \in \mathbb{Z}$ with $\lambda > 0$ minimizing $|\lambda u + \mu v|_1$.

Let's consider all sign-patterns of $\lambda u + \mu v$ in order to resolve the 1-norm!

Observation: Sign of $\lambda u_i + \mu v_i$ depends on μ/λ compared to $-u_i/v_i$.

Given a lattice basis $u, v \in \mathbb{Z}^n$, find $\lambda, \mu \in \mathbb{Z}$ with $\lambda > 0$ minimizing $|\lambda u + \mu v|_1$.

Let's consider all sign-patterns of $\lambda u + \mu v$ in order to resolve the 1-norm!

Observation: Sign of $\lambda u_i + \mu v_i$ depends on μ/λ compared to $-u_i/v_i$.

Lemma

Let $u, v \in \mathbb{Z}^n$ be lin. independent. Let $-\infty = q_0 < q_1 < \ldots < q_{k-1} < q_k = \infty$ be the sorted elements of $Q := \left\{ -\frac{u_i}{v_i} : i \in [n], v_i \neq 0 \right\} \cup \{\pm \infty\}$.

Then the sign-pattern of $\lambda u + \mu v$ is constant over all multiplier pairs λ, μ with with $\lambda > 0$ for which λ/μ is in any fixed interval $[q_{j-1}, q_j]$.

Given a lattice basis $u, v \in \mathbb{Z}^n$, find $\lambda, \mu \in \mathbb{Z}$ with $\lambda > 0$ minimizing $|\lambda u + \mu v|_1$.

Let's consider all sign-patterns of $\lambda u + \mu v$ in order to resolve the 1-norm!

Observation: Sign of $\lambda u_i + \mu v_i$ depends on μ/λ compared to $-u_i/v_i$.

Lemma

Let $u, v \in \mathbb{Z}^n$ be lin. independent. Let $-\infty = q_0 < q_1 < \ldots < q_{k-1} < q_k = \infty$ be the sorted elements of $Q := \left\{-\frac{u_i}{v_i} : i \in [n], v_i \neq 0\right\} \cup \{\pm \infty\}$. Then the sign-pattern of $\lambda u + \mu v$ is constant over all multiplier pairs λ, μ with with $\lambda > 0$ for which λ/μ is in any fixed interval $[q_{i-1}, q_i]$.

Final Step: In such an interval the 1-norm is linear and integer programming in dimension 2 can be solved efficiently (see EISENBRAND & LAUE, 0.03).

Observation

Let $u, v \in \mathbb{Z}^n$ be lin. independent. Let $-\infty = q_0 < q_1 < \ldots < q_{k-1} < q_k = \infty$ be the sorted elements of $Q:=\left\{-\frac{u_i}{v_i}:i\in[n],v_i\neq 0\right\}\cup\{\pm\infty\}$.

Then the only multiplier pairs $\lambda, \mu \in \mathbb{Z}$ for which $\lambda u + \mu v$ has zero entries not present in \underline{u} nor \underline{v} are those with $\lambda/\mu \in Q$.

Observation

Let $u, v \in \mathbb{Z}^n$ be lin. independent. Let $-\infty = q_0 < q_1 < \ldots < q_{k-1} < q_k = \infty$ be the sorted elements of $Q:=\left\{-\frac{u_i}{v_i}:i\in[n],v_i\neq 0\right\}\cup\{\pm\infty\}$.

Then the only multiplier pairs $\lambda, \mu \in \mathbb{Z}$ for which $\lambda u + \mu v$ has zero entries not present in \underline{u} nor \underline{v} are those with $\lambda/\mu \in Q$.

Heuristic:

- Let $w := \mu$
- For all $i \in [n]$ with $v_i \neq 0$ do:
 - 1 Let $w^{(i)} := v_i \cdot \mu \mu_i \cdot v_i$
 - Divide $w^{(i)}$ by the g.c.d. of its entries.
 - **3** If $|w^{(i)}|_1 < |w|_1$, replace w by $w^{(i)}$.
- Return w.

Questions? Polyhedral Comb. Vision Affine Hull Facets Min 1-Norm Final Slide

Problems to be tackled by help of MIP-solvers:

- Compute all valid equations / the dimension d.
- Find facets useful when optimizing certain objective functions, together with d independent points proving that it is a facet.
- ▶ Compute the dimension of other faces, e.g. the optimal face.
- ► Compute the conflict graph for 0/1-variables.

Questions?

Polyhedral Comb. Vision Affine Hull Facets Min 1-Norm Final Slide

0000 000 000 0000 •

Problems to be tackled by help of MIP-solvers:

- Compute all valid equations / the dimension d.
- Find facets useful when optimizing certain objective functions, together with d independent points proving that it is a facet.
- ▶ Compute the dimension of other faces, e.g. the optimal face.
- ► Compute the conflict graph for 0/1-variables.

To be done:

- ► Finish basic code :-)
- Improve convergence for cutting plane procedure.
- Carry out computational study.
- Find some nice facets for interesting polytopes.

