Introduction to SCIP

ZIB: Fast Algorithms – Fast Computers

Konrad-Zuse-Zentrum für Informationstechnik Berlin

- > non-university research institute of the state of Berlin
- ▶ Research Units:
 - numerical analysis and modeling
 - visualization and data analysis
 - optimization
 - scientific information systems
 - distributed algorithms and supercomputing

> more information: http://www.zib.de

SCIP introduction 2 / 63

Today's Schedule

```
\begin{array}{lll} 09:00-10:30 & Introduction and Overview \\ 10:30-11:00 & Coffee Break \\ 11:00-12:30 & Installation and Testing Environment \\ 12:30-14-00 & Lunch Break \\ 14:00-15:00 & Parameter Tuning \\ 15:00-15:30 & Coffee Break \\ 15:30-17:30 & Programming Exercise \\ \end{array}
```

WiFi:

- ▷ eduroam
- "Gast im ZIB" (no password)

SCIP introduction 3 / 63

SCIP - Solving Constraint Integer Programs

- 1 Constraint Integer Programming
- 2 Solving Constraint Integer Programs
- 3 The Solving Process of SCIP

http://scip.zib.de

SCIP introduction 4 / 63

SCIP - Solving Constraint Integer Programs

- 1 Constraint Integer Programming
- 2 Solving Constraint Integer Programs
- 3 The Solving Process of SCIP

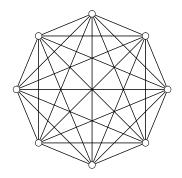
http://scip.zib.de

An example: the Traveling Salesman Problem

Definition (TSP)

Given a complete graph G = (V, E) and distances d_e for all $e \in E$:

Find a Hamiltonian cycle (cycle containing all nodes, tour) of minimum length.



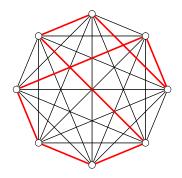
 K_8

An example: the Traveling Salesman Problem

Definition (TSP)

Given a complete graph G = (V, E) and distances d_e for all $e \in E$:

Find a Hamiltonian cycle (cycle containing all nodes, tour) of minimum length.



 K_8

An example: the Traveling Salesman Problem

Definition (TSP)

Given a complete graph G = (V, E) and distances d_e for all $e \in E$:

Find a Hamiltonian cycle (cycle containing all nodes, tour) of minimum length.

What is a Constraint Integer Program?

Mixed Integer Program

Objective function:

▶ linear function

Feasible set:

described by linear constraints

Variable domains:

min
$$c^T x$$

s.t. $Ax \le b$
 $(x_I, x_C) \in \mathbb{Z}^I \times \mathbb{R}^C$

Constraint Program

Objective function:

arbitrary function

Feasible set:

given by arbitrary constraints

Variable domains:

▷ arbitrary (usually finite)

min
$$c(x)$$

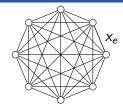
s.t. $x \in F$
 $(x_I, x_N) \in \mathbb{Z}^I \times X$

Given

- \triangleright complete graph G = (V, E)
- \triangleright distances $d_e > 0$ for all $e \in E$

Binary variables

 $\triangleright x_e = 1$ if edge e is used



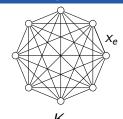
 K_8

Given

- \triangleright complete graph G = (V, E)
- \triangleright distances $d_e > 0$ for all $e \in E$

Binary variables

 $\triangleright x_e = 1$ if edge e is used



 $\forall e \in E$

$$\begin{array}{ll} \min & \sum_{e \in E} d_e \, x_e \\ \text{subject to} & \sum_{e \in \delta(v)} x_e = 2 & \forall v \in V \\ & \sum_{e \in \delta(S)} x_e \geq 2 & \forall S \subset V, S \neq \varnothing \end{array}$$

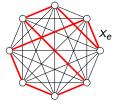
 $x_e \in \{0, 1\}$

Given

- \triangleright complete graph G = (V, E)
- \triangleright distances $d_e > 0$ for all $e \in E$

Binary variables

 $\triangleright x_e = 1$ if edge *e* is used



$$\min \quad \sum_{e \in E} d_e \, x_e$$

subject to
$$\sum_{e \in \delta(v)} x_e = 2$$

$$\sum_{e \in \delta(S)} x_e \ge 2$$

$$x_e \in \{0, 1\}$$

$$\forall v \in V$$

node degree

$$\forall S \subset V, S \neq \emptyset$$

$$\forall S \subset V, S \neq \emptyset$$

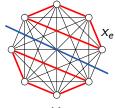
$$\forall e \in E$$

Given

- \triangleright complete graph G = (V, E)
- \triangleright distances $d_e > 0$ for all $e \in E$

Binary variables

 $\triangleright x_e = 1$ if edge e is used



$$\min \quad \sum_{e \in E} d_e \, x_e$$
 subject to
$$\sum_{e \in \delta(v)} x_e = 2$$

$$\forall v \in V$$

$$\sum_{e \in \delta(S)} x_e \ge 2$$

$$\forall S \subset V, S \neq \emptyset$$
 subtour elimination

$$x_e \in \{0, 1\}$$

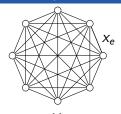
$$\forall e \in E$$

Given

- \triangleright complete graph G = (V, E)
- \triangleright distances $d_e > 0$ for all $e \in E$

Binary variables

 $\triangleright x_e = 1$ if edge e is used



18

min	$\sum_{e \in E} d_e x_e$	distance
subject to	$\sum_{e \in \delta(v)} x_e = 2$	$\forall v \in V$
	$\sum_{e \in \delta(S)} x_e \geq 2$	$\forall S \subset V, S \neq \emptyset$
	$x_e \in \{0,1\}$	$\forall e \in E$

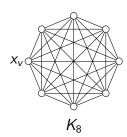
TSP - Constraint Programming Formulation

Given

- \triangleright complete graph G = (V, E)
- ▷ for each $e \in E$ a distance $d_e > 0$

Integer variables

 $\triangleright x_v$ position of $v \in V$ in tour



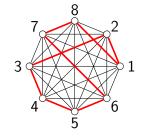
TSP – Constraint Programming Formulation

Given

- \triangleright complete graph G = (V, E)
- \triangleright for each $e \in E$ a distance $d_e > 0$

Integer variables

 $\triangleright x_v$ position of $v \in V$ in tour



min length
$$(x_1,\ldots,x_n)$$

subject to alldifferent (x_1,\ldots,x_n)
 $x_v \in \{1,\ldots,n\}$

$$\forall v \in V$$

What is a Constraint Integer Program?

Constraint Integer Program

Objective function:

▶ linear function

Feasible set:

described by arbitrary constraints

Variable domains:

When no more branching possible:

▷ CIP becomes an LP/NLP

min
$$c^T x$$

 $s.t.$ $x \in F$
 $(x_I, x_C) \in \mathbb{Z}^I \times \mathbb{R}^C$

Remark:

 arbitrary objective or variables modeled by constraints

What is a Constraint Integer Program?

Constraint Integer Program

Objective function:

▶ linear function

Feasible set:

described by arbitrary constraints

Variable domains:

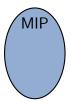
When no more branching possible:

▷ CIP becomes an LP/NLP

$$\begin{array}{ll} \text{min} & \sum_{e \in E} d_e \, x_e \\ s.t. & \sum_{e \in \delta(v)} x_e &= 2 & \forall \, v \in V \\ & \text{nosubtour}(x) \\ & x_e &\in \{0,1\} & \forall \, e \in E \end{array}$$

(CIP formulation of TSP)

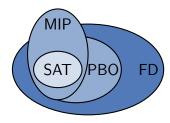
Single nosubtour constraint rules out subtours (e.g. by domain propagation). It may also separate subtour elimination inequalities.



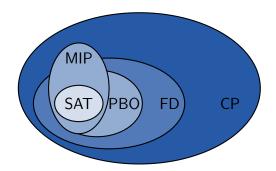
- $\, \triangleright \, \, M_{ixed} \, \, I_{nteger} \, \, P_{rograms}$

- SAT is fiability problems
- Pseudo-Boolean Optimization

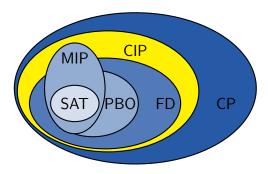
- SAT is fiability problems
- \triangleright Pseudo-Boolean Optimization
- ▶ Finite Domain



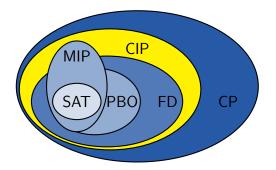
- > SAT is fiability problems
- ▶ Finite Domain



- SAT is fiability problems
- Pseudo-Boolean Optimization
- ▶ Finite Domain



- > SAT is fiability problems
- Pseudo-Boolean Optimization
- ▶ Finite Domain
- Constraint Programming
- Constraint Integer Programming



Relation to CP and MIP

- ▷ Every MIP is a CIP. "MIP Ç CIP"
- \triangleright Every CP over a finite domain space is a CIP. "FD \subsetneq CIP"

SCIP - Solving Constraint Integer Programs

- 1 Constraint Integer Programming
- 2 Solving Constraint Integer Programs
- 3 The Solving Process of SCIP

http://scip.zib.de

How do we solve CIPs?



SCIP (Solving Constraint Integer Programs) ...

- provides a full-scale MIP and MINLP solver,
- ▷ is constraint based,
- ▷ incorporates
 - CP features (domain propagation),
 - ▶ MIP features (cutting planes, LP relaxation), and
 - SAT-solving features (conflict analysis, restarts),
- ▷ is a branch-cut-and-price framework,
- has a modular structure via plugins,
- ▷ is free for academic purposes,
- and is available in source-code under http://scip.zib.de!

Some more facts about SCIP

- user-friendly interactive shell
- interfaces to AMPL, GAMS, ZIMPL, MATLAB, Python and Java
- ▶ C++ wrapper classes
- ▶ LP solvers: CLP, CPLEX, Gurobi, MOSEK, QSopt, SoPlex, Xpress
- over 1600 parameters and 15 emphasis settings

documentation and guidelines

- more than 450 000 lines of C code, 20% documentation
 - ▶ 30 000 assertions, 4 000 debug messages
- HowTos: plugins types, debugging, automatic testing
- ▶ 11 examples illustrating the use of SCIP
- active mailing list (280 members)

SCIP Optimization Suite

- ▶ Toolbox for generating and solving constraint integer programs

SCIP Optimization Suite

- ▶ Toolbox for generating and solving constraint integer programs

ZIMPL

SCIP

▶ MIP, MINLP and CIP solver, branch-cut-and-price framework

SoPlex

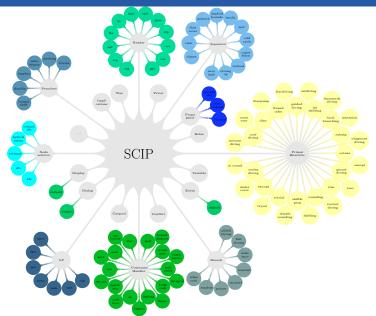
revised primal and dual simplex algorithm

$GCG \rightarrow see talk tomorrow 9:40$

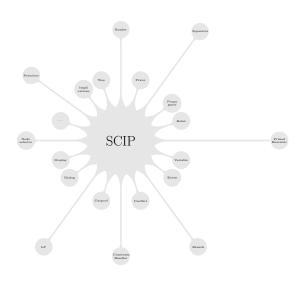
generic branch-cut-and-price solver

$\mathsf{UG} \to \mathsf{see} \; \mathsf{talk} \; \mathsf{tomorrow} \; 10.20$

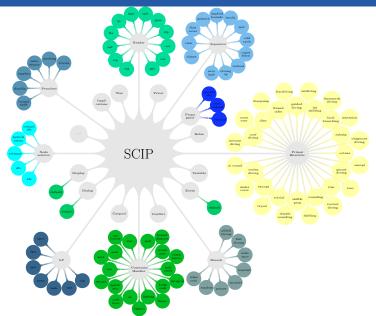
Structure of SCIP



Structure of SCIP



Structure of SCIP



Plugin based design

SCIP core

branching tree

variables

- conflict analysis
- statistics

- ▷ clique table
- ▷ ...

Plugin based design

▷ clique table

SCIP core

- branching tree ▷ solution pool
- ▷ variables
 ▷ cut pool
 ▷ implication graph
- ▷ conflict analysis
 ▷ statistics
 ▷ . . .

Plugins

- external callback objects
- ▷ interact with the framework through a very detailed interface

Plugin based design

SCIP core

- ▷ branching tree
 ▷ solution pool
 ▷ clique table
- ▷ variables
 ▷ cut pool
 ▷ implication graph
- ▷ conflict analysis
 ▷ statistics
 ▷ . . .

Plugins

- external callback objects
- ▷ SCIP knows for each plugin type:
 - the number of available plugins
 - priority defining the calling order (usually)
- ⇒ plugins are black boxes for the SCIP core

Plugin based design

SCIP core

- ▷ branching tree
 ▷ solution pool
 ▷ clique table
- ▷ variables
 ▷ cut pool
 ▷ implication graph

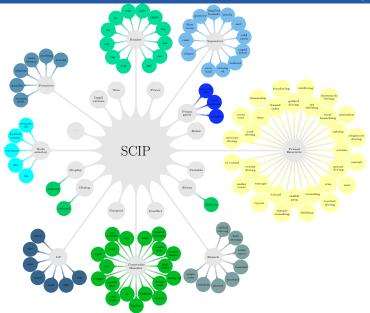
Plugins

- external callback objects
- SCIP knows for each plugin type:
 - the number of available plugins
 - priority defining the calling order (usually)
- ⇒ plugins are black boxes for the SCIP core
- ⇒ Very flexible branch-and-bound based search algorithm

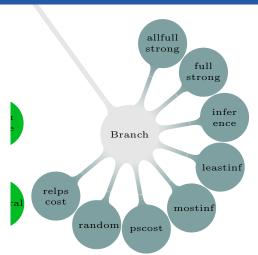
Types of Plugins

- Separator: adds cuts, improves dual bound
- ▶ Pricer: allows dynamic generation of variables
- Heuristic: searches solutions, improves primal bound
- ▶ Branching rule: how to divide the problem?
- ▶ Node selection: which subproblem should be regarded next?
- ▶ Presolver: simplifies the problem in advance, strengthens structure
- ▶ Propagator: simplifies problem, improves dual bound locally
- ▶ Reader: reads problems from different formats
- ▷ Event handler: catches events (e.g., bound changes, new solutions)
- Display: allows modification of output
- ▷ ...

A closer look: branching rules



A closer look: branching rules



What does SCIP know about branching rules?

- SCIP knows the number of available branching rules
- each branching rule has a priority
- ▷ SCIP calls the branching rule in decreasing order of priority
- by the interface defines the possible results of a call:
 - branched
 - reduced domains
 - added constraints
 - detected cutoff
 - did not run

How does SCIP call a branching rule?

```
/* start timing */
SCIPclockStart(branchrule->branchclock, set);
/* call external method */
SCIP_CALL( branchrule -> branchexeclp(set -> scip, branchrule,
   allowaddcons, result));
/* stop timing */
SCIPclockStop(branchrule->branchclock, set);
/* evaluate result */
if( *result != SCIP CUTOFF
   && *result != SCIP_CONSADDED
   && *result != SCIP_REDUCEDDOM
   && *result != SCIP SEPARATED
   && *result != SCIP_BRANCHED
   && *result != SCIP DIDNOTRUN )
{
   SCIPerrorMessage (
      "branching_rule_<%s>_returned_invalid_result_code_<%d>_from_LP_
UUUUUUUUsolutionubranching\n",
      branchrule -> name, *result);
   return SCIP INVALIDRESULT:
}
```

What can a plugin access?

Plugins are allowed to access all global (core) information

branching tree

▷ solution pool

clique table

variables

cut pool

implication graph

- conflict analysis
- statistics

▷ ...

What can a plugin access?

Plugins are allowed to access all global (core) information

branching tree

solution pool

clique table

variables

cut pool

implication graph

- conflict analysis
- statistics

▷ ...

Ideally, plugins should not access data of other plugins!!!

What can a plugin access?

Plugins are allowed to access all global (core) information

- branching tree
- solution pool

clique table

variables

cut pool

implication graph

- conflict analysis
- statistics

▷ ...

Ideally, plugins should not access data of other plugins!!!

Branching Rules

▶ LP solution

variables

statistics

Constraint Handlers

Constraint handlers

- ▶ define the feasible region
- ▷ a single constraint may represent a whole set of inequalities

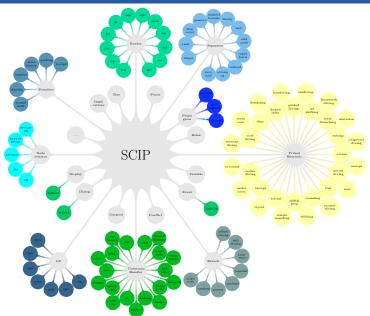
Functions

- check and enforce feasibility of solutions
- can add linear representation to LP relaxation
- constraint-specific presolving, domain propagation, separation

Result

- SCIP is constraint based
 - Advantage: flexibility
 - ► Disadvantage: limited global view

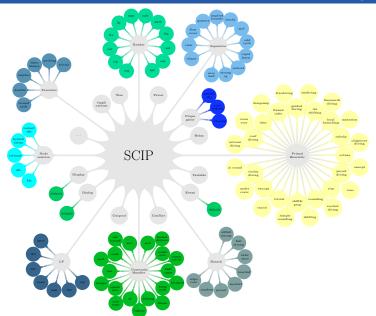
Default Plugins



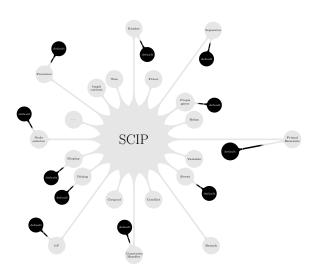
Number of default plugins

	SCIP Version									
Plugin	0.7	0.8	0.9	1.0	1.1	1.2	2.0	2.1	3.0	3.1
Branching Rules	6	7	8	8	8	8	8	8	8	9
Constraint Handlers	10	10	11	11	14	16	23	25	26	26
Node Selectors	3	7	3	5	5	5	5	5	5	7
Presolvers	2	7	5	5	6	6	6	5	9	9
Primal Heuristics	9	14	21	23	24	27	31	33	35	38
Propagators	0	1	2	2	2	2	3	5	7	8
Readers	2	4	6	6	11	13	15	16	17	18
Separators	3	6	7	8	10	10	12	13	13	13

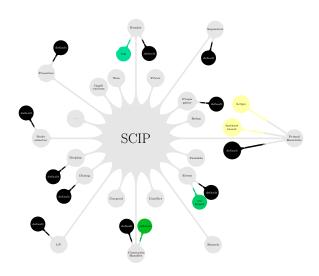
Extending SCIP



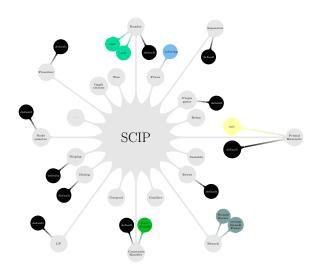
Extending SCIP



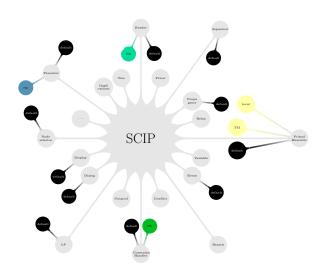
Extending SCIP: TSP



Extending SCIP: Coloring



Extending SCIP: STP

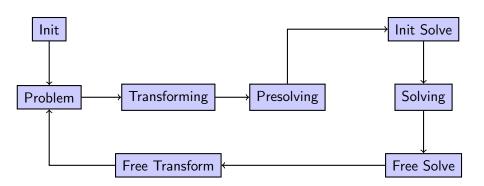


SCIP - Solving Constraint Integer Programs

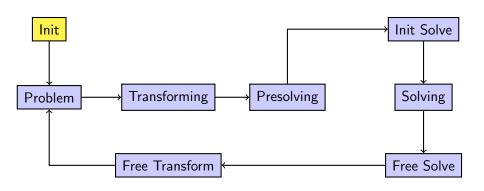
- 1 Constraint Integer Programming
- 2 Solving Constraint Integer Programs
- 3 The Solving Process of SCIP

http://scip.zib.de

Operational Stages

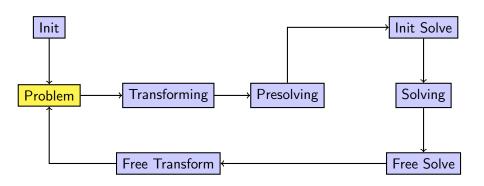


Operational Stages



- Basic data structures are allocated and initialized.
- User includes required plugins (or just takes default plugins).

Problem Specification



- User creates and modifies the original problem instance.
- Problem creation is usually done in file readers.

Define Variables (TSP Example)

```
SCIP_VAR* var;
SCIP_CALL (
                          // return value macro
  SCIPcreateVar(
                          // SCIP pointer
    scip,
   &var,
                          // save in variable
    "varname".
                        // pass variable name
   0.0,
                          // lower bound
   1.0,
                          // upper bound
   length,
                          // obj. value
   SCIP_VARTYPE_BINARY,
                          // type
                          // initial
   TRUE,
   FALSE,
                          // removable
    NULL, NULL, NULL, // no callback functions
    NULL
                          // no variable data
SCIP_CALL( SCIPaddVar(scip, var) );  // add var.
```

Define Variables (TSP Example)

```
SCIP_VAR* var;
SCIP CALL (
                           // return value macro
  SCIPcreateVarBasic(
    scip,
                           // SCIP pointer
                           // save in variable
    &var,
    "varname",
                           // pass variable name
    0.0,
                           // lower bound
    1.0,
                           // upper bound
    length,
                           // obj. value
    SCIP_VARTYPE_BINARY
                           // type
SCIP_CALL( SCIPaddVar(scip, var) ); // add var.
```

TSP: Define Degree Constraints

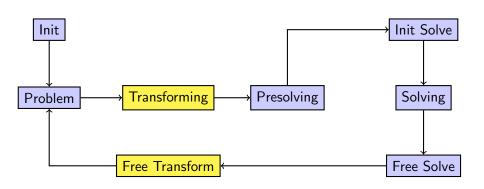
```
SCIP CALL (SCIPcreateConsLinear (
   scip, // SCIP pointer
   &cons, // save in cons
   "consname", // name
   nvar, // number of variables
   vars, // array of variables
   vals, // array of values
   2.0, // left hand side
   2.0, // right hand side (equation)
   TRUE, // initial?
   FALSE, // separate?
   TRUE, // enforce?
   TRUE, // check?
   TRUE, // propagate?
   FALSE, // local?
   FALSE, // modifable?
   FALSE, // dynamic?
   FALSE, // removable?
   FALSE // stick at node?
 ));
SCIP_CALL( SCIPaddCons(scip, cons)); // add constraint
SCIP_CALL( SCIPreleaseCons(scip, &cons) ); // free cons. space
```

MIPs are specified using linear constraints only (may be "upgraded").

TSP: Define Degree Constraints

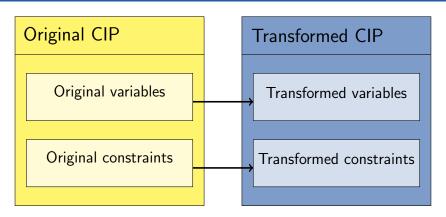
MIPs are specified using linear constraints only (may be "upgraded").

Transformation



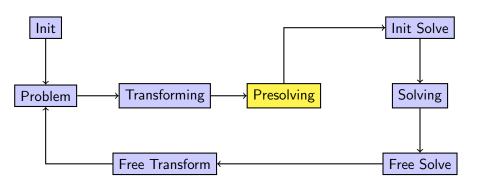
▷ Creates a working copy of the original problem.

Original and Transformed Problem

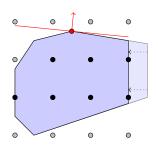


- data is copied into separate memory area
- presolving and solving operate on transformed problem
- > original data can only be modified in problem modification stage

Presolving



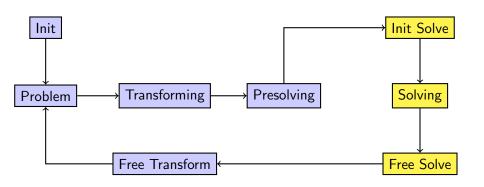
Presolving



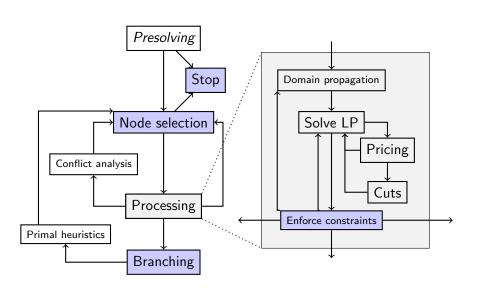
Task

- reduce size of model by removing irrelevant information
- strengthen LP relaxation by exploiting integrality information
- make the LP relaxation numerically more stable
- extract useful information
- Primal Reductions: ▷ based on feasibility reasoning
 - ▷ no feasible solution is cut off
 - Dual Reductions: ▷ consider objective function
 - > at least one optimal solution remains

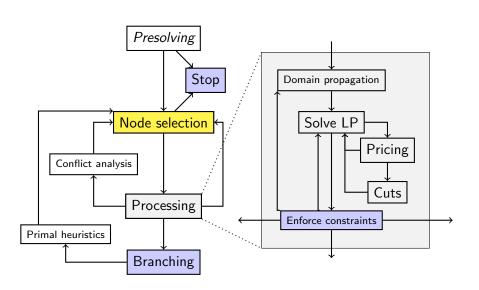
Solving



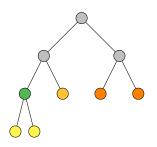
Flow Chart SCIP



Flow Chart SCIP



Node Selection



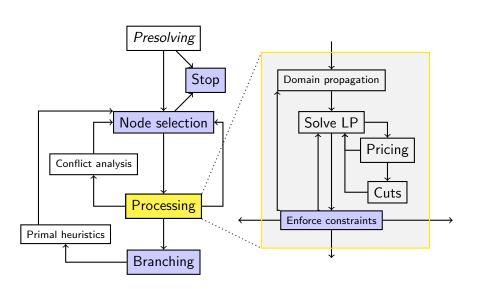
Task

- improve primal bound
- keep comp. effort small

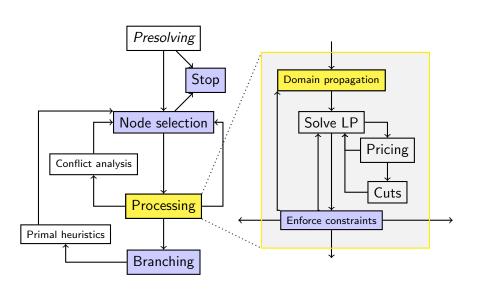
Techniques

- basic rules
 - depth first search (DFS)
 - ightarrow early feasible solutions
 - best bound search (BBS)
 - ightarrow improve dual bound
 - best estimate search (BES)
 - ightarrow improve primal bound
- - BBS or BES with plunging
 - hybrid BES/BBS
 - interleaved BES/BBS

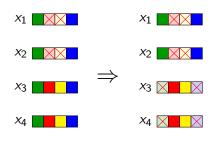
Flow Chart SCIP



Flow Chart SCIP



Domain Propagation

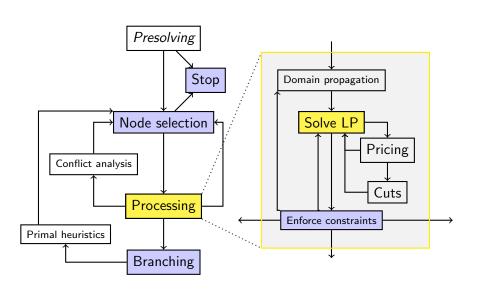


Task

- simplify model locally
- improve local dual bound
- detect infeasibility

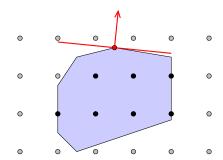
Techniques

- - each cons handler may provide a propagation routine
 - reduced presolving (usually)
- dual propagation
 - root reduced cost strengthening
 - objective function
- ▷ special structures
 - variable bounds

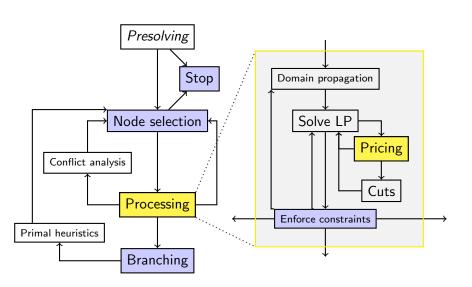


LP Solving

- ▶ LP solver is a black box
- interface to different LP solvers:
 SoPlex, CPLEX, XPress,
 Gurobi, CLP, . . .
- primal/dual simplex
- barrier with/without crossover



- feasibility double-checked by SCIP
- condition number check
- resolution by changing parameters:scaling, tolerances, solving from scratch, other simplex

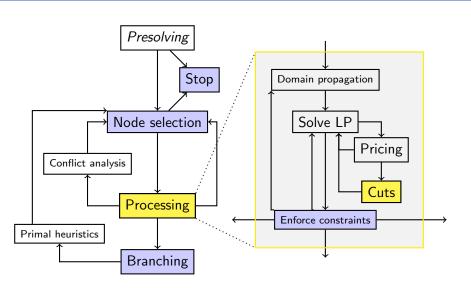


Branch-and-Price

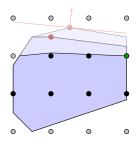
- huge number of variables
- start with subset
- ▷ add others, when needed

Pricing

- find variable with negative reduced costs
- ▷ or prove that there exists none
- typically problem specific
- dynamic aging of variables
- problem variable pricer to add them again
- ▷ early branching possible
- ▷ lazy variable bounds



Cutting Plane Separation



Task

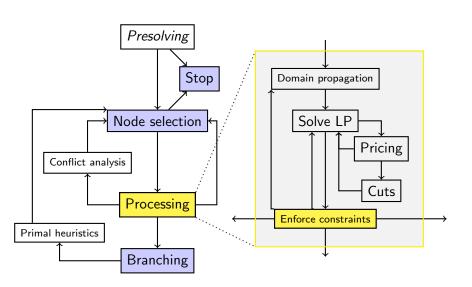
- strengthen relaxation
- add valid constraints
- generate on demand

Techniques

- complemented MIR cuts
- Gomory mixed integer cuts
- strong Chvátal-Gomory cuts
- implied bound cuts
- reduced cost strengthening

▷ problem specific cuts

- ▶ 0-1 knapsack problem
- stable set problem
- 0-1 single node flow problem

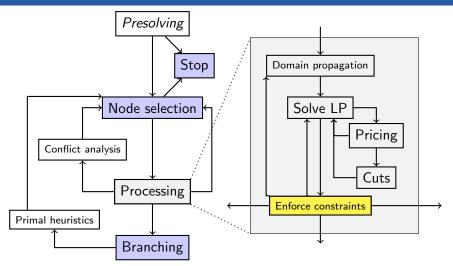


LP solution may violate a constraint not contained in the relaxation.

Enforcing is necessary for a correct implementation!

Constraint handler resolves the infeasibility by ...

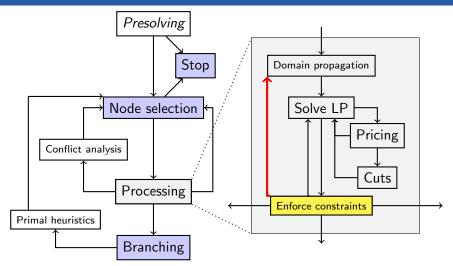
- Reducing a variable's domain,
- Separating a cutting plane (may use integrality),
- ▶ Adding a (local) constraint,
- Creating a branching,
- ▷ Concluding that the subproblem is infeasible and can be cut off, or
- ▶ Just saying "solution infeasible".



▶ Reduced domain

- ▶ Added cut
- ▶ Branched

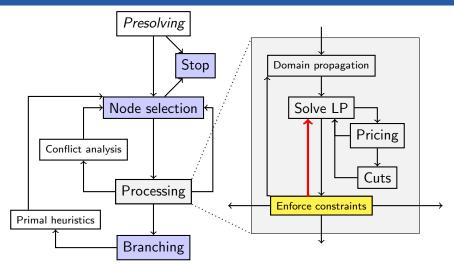
- Cutoff
- ▶ Infeasible
- ▶ Feasible



> Reduced domain

- ▶ Added cut
- ▶ Branched

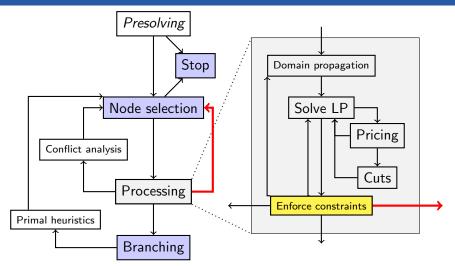
- Cutoff
- ▶ Infeasible
- ▶ Feasible



- Reduced domain
- ▶ Added cut
- Cutoff
- ▶ Infeasible

- Added constraint
- ▶ Branched

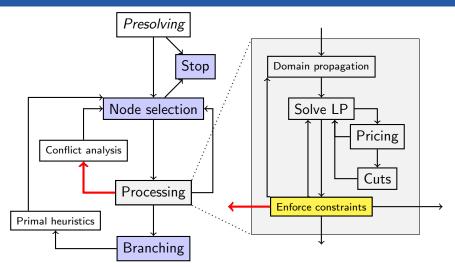
▶ Feasible



- ▶ Reduced domain
- ▶ Added cut
- ▶ Infeasible

- Added constraint
- ▶ Branched

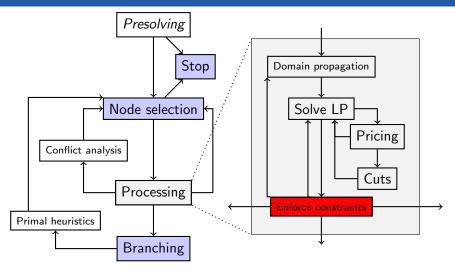
▶ Feasible



> Reduced domain

- ▶ Added cut
- ▶ Branched

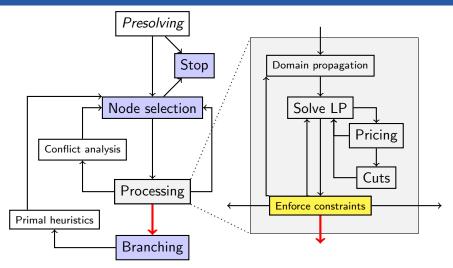
- - ▶ Feasible



> Reduced domain

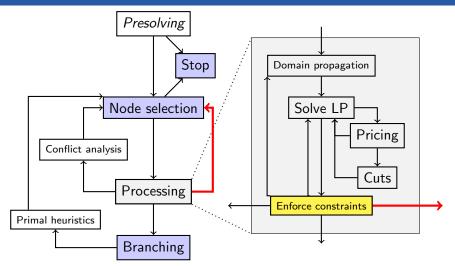
- ▶ Added cut
- ▶ Branched

- Cutoff
- ▶ Infeasible
- ▶ Feasible



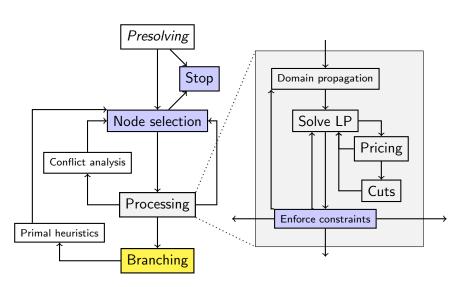
Reduced domain

- ▶ Added cut Branched
- ▶ Infeasible
- Feasible

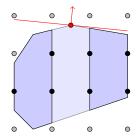


Reduced domain

- ▶ Added cut Branched
- ▶ Infeasible
- Feasible



Branching Rules

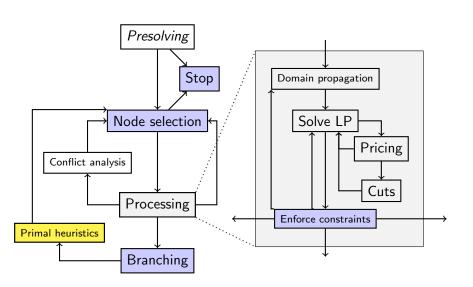


Task

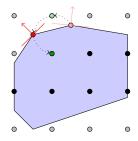
- divide into (disjoint) subproblems

Techniques

- ▷ branching on variables
 - most infeasible
 - least infeasible
 - random branching
 - strong branching
 - pseudocost
 - reliability
 - VSIDS
 - hybrid reliability/inference
- branching on constraints
 - ► SOS1
 - ► SOS2



Primal Heuristics

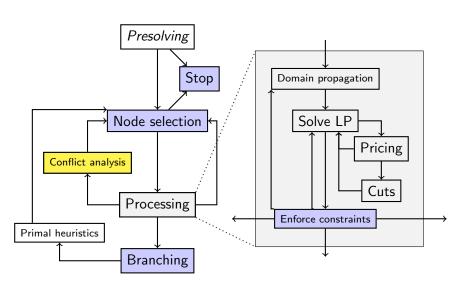


Task

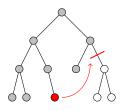
- improve primal bound
- ▷ effective on average
- guide remaining search

Techniques

- ▷ rounding
 - possibly solve final LP
- - least infeasible
 - guided
- objective diving
 - objective feasibility pump
- Large Neighborhood Search
 - RINS, local branching
 - RENS
- ▷ combinatorial



Conflict Analysis



Task

- Analyze infeasibility
- Derive valid constraints

Techniques

⊳ Analyze:

- Propagation conflicts
- ► Infeasible LPs
- Bound-exceeding LPs
- Strong branching conflicts

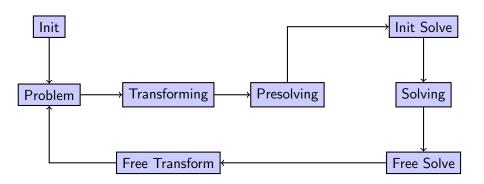
Detection:

- Cut in conflict graph
- LP: Dual ray heuristic

▶ Use conflicts:

- Only for propagation
- As cutting planes

Operational Stages



Implementation Hints

- ▷ SCIP has own memory handling.
 - ► Standard memory: SCIPallocMemoryArray(scip,&p,10), SCIPfreeMemoryArray(scip,&p)
 - ▶ Block memory: SCIPallocBlockMemoryArray(scip,&p,10), SCIPfreeBlockMemoryArray(scip,&p,10)
 - ► Fast buffer: SCIPallocBufferArray(scip,&p,10), SCIPfreeBufferArray(scip,&p)
- → There are template files, e.g. cons_xyz.{c,h}.
- Only include scip/scip.h, pub_*.h, or scip/scipdefplugins.h.

Documentation

- Constraint Integer Programming
 Ph.D. dissertation of Tobias Achterberg, 2007.
- Solving mixed integer linear and nonlinear problems using the SCIP Optimization Suite ZIB Report, 2012.

- http://scip.zib.de Doxygen documentation, HowTos, FAQ
- ▷ See: scip.h, pub_*.h, <plugin>.h (e.g. cons_linear.h)
- ▶ If nothing helps: SCIP mailing list (scip@zib.de)

SCIP is...

- □ a solver for MIP and MINLP
- ▷ a framework for branch-and-bound based algorithms (branch-and-cut, branch-and-price, . . .)
- ▷ part of the SCIP Optimization Suite

Advantages of SCIP:

- riangle broad scope (o next two days)
- \triangleright available in source code (\rightarrow coming next)
- $hd \$ actively developed (ightarrow tomorrow)
- ightharpoonup hundreds of parameters to play with (ightharpoonup afternoon)
- \triangleright easily extendable (\rightarrow afternoon)

Today's Schedule

```
\begin{array}{lll} 09:00-10:30 & Introduction and Overview \\ 10:30-11:00 & Coffee Break \\ 11:00-12:30 & Installation and Testing Environment \\ 12:30-14-00 & Lunch Break \\ 14:00-15:00 & Parameter Tuning \\ 15:00-15:30 & Coffee Break \\ 15:30-17:30 & Programming Exercise \\ \end{array}
```

WiFi:

- ▶ eduroam
- "Gast im ZIB" (no password)