scip_numerics.h
Go to the documentation of this file.
38/*---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9----+----0----+----1----+----2*/
142 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
153 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
164 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
175 * This tolerance value is used by the SCIP core and plugins to tighten then feasibility tolerance on relaxations
176 * (especially the LP relaxation) during a solve. It is set to SCIP_INVALID initially, which means that only the
177 * feasibility tolerance of the particular relaxation is taken into account. If set to a valid value, however,
178 * then this value should be used to reduce the primal feasibility tolerance of a relaxation (thus, use the
181 * @pre The value of relaxfeastol is reset to SCIP_INVALID when initializing the solve (INITSOL).
182 * Therefore, this method can only be called in one of the following stages of the SCIP solving process:
206/** returns the minimum value that is regarded as huge and should be handled separately (e.g., in activity
519/** checks if relative difference of val1 and val2 is not greater than dual feasibility tolerance */
535/** checks if relative difference of val1 and val2 is not lower than -dual feasibility tolerance */
606/** checks if the given new lower bound is tighter (w.r.t. bound strengthening epsilon) than the old one */
615/** checks if the given new upper bound is tighter (w.r.t. bound strengthening epsilon) than the old one */
706/** converts the given real number representing an integer to an int; in optimized mode the function gets inlined for
717/** converts the given real number representing an integer to a long integer; in optimized mode the function gets inlined for
727 * This is useful, if the value, e.g., the activity of a linear constraint or the pseudo objective value, gets a high
728 * absolute value during the optimization process which is later reduced significantly. In this case, the last digits
730 * We do not consider the cancellations which can occur during increasing the absolute value because they just cannot
732 * In order to get more reliable values, the idea is to always store the last reliable value, where increasing the
733 * absolute of the value is viewed as preserving reliability. Then, after each update, the new absolute value can be
734 * compared against the last reliable one with this method, checking whether it was decreased by a factor of at least
746/* In optimized mode, the function calls are overwritten by defines to reduce the number of function calls and
763#define SCIPisScalingIntegral(scip, val, scalar) SCIPsetIsScalingIntegral((scip)->set, val, scalar)
809#define SCIPisLbBetter(scip, newlb, oldlb, oldub) SCIPsetIsLbBetter(scip->set, newlb, oldlb, oldub)
810#define SCIPisUbBetter(scip, newub, oldlb, oldub) SCIPsetIsUbBetter(scip->set, newub, oldlb, oldub)
824#define SCIPconvertRealToLongint(scip, real) ((SCIP_Longint)((real) < 0 ? ((real) - 0.5) : ((real) + 0.5)))
826#define SCIPisUpdateUnreliable(scip, newval, oldval) SCIPsetIsUpdateUnreliable((scip)->set, newval, oldval)
846 char** endptr /**< pointer to store the final string position if successfully parsed, otherwise @p str */
854 char** endptr /**< pointer to store the final string position if successfully parsed, otherwise @p str */
common defines and data types used in all packages of SCIP
SCIP_Bool SCIPisRelEQ(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:1147
SCIP_Real SCIPdualfeasFloor(SCIP *scip, SCIP_Real val)
Definition: scip_numerics.c:1069
SCIP_Bool SCIPisSumPositive(SCIP *scip, SCIP_Real val)
Definition: scip_numerics.c:747
SCIP_Bool SCIPisRelLE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:1173
SCIP_Bool SCIPisUbBetter(SCIP *scip, SCIP_Real newub, SCIP_Real oldlb, SCIP_Real oldub)
Definition: scip_numerics.c:1134
SCIP_Bool SCIPisFeasGE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:823
SCIP_Real SCIPdualfeasCeil(SCIP *scip, SCIP_Real val)
Definition: scip_numerics.c:1081
SCIP_Bool SCIPisSumRelGT(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:1251
SCIP_Bool SCIPisDualfeasNegative(SCIP *scip, SCIP_Real val)
Definition: scip_numerics.c:1033
SCIP_Bool SCIPisGE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:488
SCIP_Bool SCIPisFeasFracIntegral(SCIP *scip, SCIP_Real val)
Definition: scip_numerics.c:884
SCIP_Real SCIPchgRelaxfeastol(SCIP *scip, SCIP_Real relaxfeastol)
Definition: scip_numerics.c:316
SCIP_Bool SCIPisRelLT(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:1160
SCIP_Bool SCIPisSumRelLE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:1238
SCIP_Bool SCIPparseRational(SCIP *scip, const char *str, SCIP_RATIONAL *value, char **endptr)
Definition: scip_numerics.c:409
SCIP_Bool SCIPisRelGE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:1199
SCIP_Bool SCIPisRelGT(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:1186
SCIP_Bool SCIPisSumRelEQ(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:1212
SCIP_Bool SCIPisSumNegative(SCIP *scip, SCIP_Real val)
Definition: scip_numerics.c:759
SCIP_Bool SCIPisFeasEQ(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:771
SCIP_Bool SCIPisDualfeasLT(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:957
SCIP_Bool SCIPisDualfeasIntegral(SCIP *scip, SCIP_Real val)
Definition: scip_numerics.c:1045
SCIP_Bool SCIPisLbBetter(SCIP *scip, SCIP_Real newlb, SCIP_Real oldlb, SCIP_Real oldub)
Definition: scip_numerics.c:1119
SCIP_Bool SCIPisDualfeasPositive(SCIP *scip, SCIP_Real val)
Definition: scip_numerics.c:1021
SCIP_Bool SCIPisLE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:462
void SCIPprintReal(SCIP *scip, FILE *file, SCIP_Real val, int width, int precision)
Definition: scip_numerics.c:341
SCIP_Bool SCIPisSumLT(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:683
SCIP_Real SCIPdualfeasRound(SCIP *scip, SCIP_Real val)
Definition: scip_numerics.c:1093
SCIP_Bool SCIPisSumRelLT(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:1225
SCIP_Bool SCIPisDualfeasFracIntegral(SCIP *scip, SCIP_Real val)
Definition: scip_numerics.c:1057
SCIP_Bool SCIPisFeasLT(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:784
SCIP_Bool SCIPisFeasNegative(SCIP *scip, SCIP_Real val)
Definition: scip_numerics.c:860
SCIP_Bool SCIPisFeasLE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:797
SCIP_Bool SCIPisFracIntegral(SCIP *scip, SCIP_Real val)
Definition: scip_numerics.c:610
SCIP_Bool SCIPisSumEQ(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:670
SCIP_RETCODE SCIPchgFeastol(SCIP *scip, SCIP_Real feastol)
Definition: scip_numerics.c:240
SCIP_Bool SCIPisFeasIntegral(SCIP *scip, SCIP_Real val)
Definition: scip_numerics.c:872
SCIP_Bool SCIPisDualfeasGT(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:983
SCIP_Bool SCIPisDualfeasEQ(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:944
SCIP_Bool SCIPisSumGE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:722
SCIP_Bool SCIPisDualfeasZero(SCIP *scip, SCIP_Real val)
Definition: scip_numerics.c:1009
SCIP_Real SCIPdualfeasFrac(SCIP *scip, SCIP_Real val)
Definition: scip_numerics.c:1105
SCIP_Bool SCIPisGT(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:475
SCIP_Longint SCIPconvertRealToLongint(SCIP *scip, SCIP_Real real)
Definition: scip_numerics.c:1295
SCIP_Bool SCIPisSumRelGE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:1264
SCIP_Bool SCIPisScalingIntegral(SCIP *scip, SCIP_Real val, SCIP_Real scalar)
Definition: scip_numerics.c:597
SCIP_Bool SCIPisFeasGT(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:810
SCIP_Bool SCIPisEQ(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:436
SCIP_Bool SCIPisDualfeasGE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:996
SCIP_Bool SCIPisUpdateUnreliable(SCIP *scip, SCIP_Real newvalue, SCIP_Real oldvalue)
Definition: scip_numerics.c:1319
int SCIPconvertRealToInt(SCIP *scip, SCIP_Real real)
Definition: scip_numerics.c:1279
SCIP_RETCODE SCIPchgBarrierconvtol(SCIP *scip, SCIP_Real barrierconvtol)
Definition: scip_numerics.c:283
SCIP_Bool SCIPisLT(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:449
SCIP_Bool SCIPisDualfeasLE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:970
SCIP_Bool SCIPisSumGT(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:709
SCIP_Bool SCIPisFeasPositive(SCIP *scip, SCIP_Real val)
Definition: scip_numerics.c:848
SCIP_Bool SCIPisSumLE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:696
SCIP_Bool SCIPparseReal(SCIP *scip, const char *str, SCIP_Real *value, char **endptr)
Definition: scip_numerics.c:368
SCIP_RETCODE SCIPchgDualfeastol(SCIP *scip, SCIP_Real dualfeastol)
Definition: scip_numerics.c:258
Definition: multiprecision.hpp:66
internal methods for global SCIP settings
Definition: struct_rational.h:47
Definition: struct_scip.h:72
SCIP main data structure.
type definitions for rational numbers
type definitions for return codes for SCIP methods
type definitions for SCIP's main datastructure