Scippy

    SCIP

    Solving Constraint Integer Programs

    sepa_minor.h
    Go to the documentation of this file.
    1/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
    2/* */
    3/* This file is part of the program and library */
    4/* SCIP --- Solving Constraint Integer Programs */
    5/* */
    6/* Copyright (c) 2002-2025 Zuse Institute Berlin (ZIB) */
    7/* */
    8/* Licensed under the Apache License, Version 2.0 (the "License"); */
    9/* you may not use this file except in compliance with the License. */
    10/* You may obtain a copy of the License at */
    11/* */
    12/* http://www.apache.org/licenses/LICENSE-2.0 */
    13/* */
    14/* Unless required by applicable law or agreed to in writing, software */
    15/* distributed under the License is distributed on an "AS IS" BASIS, */
    16/* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. */
    17/* See the License for the specific language governing permissions and */
    18/* limitations under the License. */
    19/* */
    20/* You should have received a copy of the Apache-2.0 license */
    21/* along with SCIP; see the file LICENSE. If not visit scipopt.org. */
    22/* */
    23/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
    24
    25/**@file sepa_minor.h
    26 * @ingroup SEPARATORS
    27 * @brief principal minor separator
    28 * @author Benjamin Mueller
    29 *
    30 * This separator detects all principal minors of the matrix \f$ xx' \f$ for which all auxiliary variables \f$ X \f$
    31 * exist, i.e., two indices \f$ i \neq j \f$ such that \f$ X_{ii} \f$, \f$ X_{jj} \f$, and \f$ X_{ij} \f$ exist. Because
    32 * \f$ X - xx' \f$ is required to be positive semi-definite, it follows that the matrix
    33 *
    34 * \f[
    35 * A(x,X) = \begin{bmatrix} 1 & x_i & x_j \\ x_i & X_{ii} & X_{ij} \\ x_j & X_{ij} & X_{jj} \end{bmatrix}
    36 * \f]
    37 *
    38 * is also required to be positive semi-definite. Let \f$ v \f$ be a negative eigenvector for \f$ A(x^*,X^*) \f$ in a
    39 * point \f$ (x^*,X^*) \f$, which implies that \f$ v' A(x^*,X^*) v < 0 \f$. To cut off \f$ (x^*,X^*) \f$, the separator
    40 * computes the globally valid linear inequality \f$ v' A(x,X) v \ge 0 \f$.
    41 *
    42 *
    43 * To identify which entries of the matrix X exist, we (the separator) iterate over the available nonlinear constraints.
    44 * For each constraint, we explore its expression and collect all nodes (expressions) of the form
    45 * - \f$x^2\f$
    46 * - \f$y \cdot z\f$
    47 *
    48 * Then, we go through the found bilinear terms \f$(yz)\f$ and if the corresponding \f$y^2\f$ and \f$z^2\f$ exist, then we have found
    49 * a minor.
    50 *
    51 * For circle packing instances, the minor cuts are not really helpful (see [Packing circles in a square: a theoretical
    52 * comparison of various convexification techniques](http://www.optimization-online.org/DB_HTML/2017/03/5911.html)).
    53 * Furthermore, the performance was negatively affected, thus circle packing constraint are identified and ignored in
    54 * the above algorithm. This behavior is controlled with the parameter "separating/minor/ignorepackingconss".
    55 */
    56
    57/*---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9----+----0----+----1----+----2*/
    58
    59#ifndef __SCIP_SEPA_MINOR_H__
    60#define __SCIP_SEPA_MINOR_H__
    61
    62
    63#include "scip/scip.h"
    64
    65#ifdef __cplusplus
    66extern "C" {
    67#endif
    68
    69/** creates the minor separator and includes it in SCIP
    70 *
    71 * @ingroup SeparatorIncludes
    72 */
    73SCIP_EXPORT
    75 SCIP* scip /**< SCIP data structure */
    76 );
    77
    78/**@addtogroup SEPARATORS
    79 *
    80 * @{
    81 */
    82
    83/** @} */
    84
    85#ifdef __cplusplus
    86}
    87#endif
    88
    89#endif
    SCIP_RETCODE SCIPincludeSepaMinor(SCIP *scip)
    Definition: sepa_minor.c:880
    SCIP callable library.
    enum SCIP_Retcode SCIP_RETCODE
    Definition: type_retcode.h:63