Scippy

    SCIP

    Solving Constraint Integer Programs

    presol_qpkktref.h
    Go to the documentation of this file.
    1/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
    2/* */
    3/* This file is part of the program and library */
    4/* SCIP --- Solving Constraint Integer Programs */
    5/* */
    6/* Copyright (c) 2002-2025 Zuse Institute Berlin (ZIB) */
    7/* */
    8/* Licensed under the Apache License, Version 2.0 (the "License"); */
    9/* you may not use this file except in compliance with the License. */
    10/* You may obtain a copy of the License at */
    11/* */
    12/* http://www.apache.org/licenses/LICENSE-2.0 */
    13/* */
    14/* Unless required by applicable law or agreed to in writing, software */
    15/* distributed under the License is distributed on an "AS IS" BASIS, */
    16/* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. */
    17/* See the License for the specific language governing permissions and */
    18/* limitations under the License. */
    19/* */
    20/* You should have received a copy of the Apache-2.0 license */
    21/* along with SCIP; see the file LICENSE. If not visit scipopt.org. */
    22/* */
    23/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
    24
    25/**@file presol_qpkktref.h
    26 * @ingroup PRESOLVERS
    27 * @brief qpkktref presolver
    28 * @author Tobias Fischer
    29 *
    30 * This presolver tries to add the KKT conditions as additional (redundant) constraints to the (mixed-binary) quadratic
    31 * program
    32 * \f[
    33 * \begin{array}{ll}
    34 * \min & x^T Q x + c^T x + d \\
    35 * & A x \leq b, \\
    36 * & x \in \{0, 1\}^{p} \times R^{n-p}.
    37 * \end{array}
    38 * \f]
    39 *
    40 * We first check if the structure of the program is like (QP), see the documentation of the function
    41 * checkConsQuadraticProblem().
    42 *
    43 * If the problem is known to be bounded (all variables have finite lower and upper bounds), then we add the KKT
    44 * conditions. For a continuous QPs the KKT conditions have the form
    45 * \f[
    46 * \begin{array}{ll}
    47 * Q x + c + A^T \mu = 0,\\
    48 * Ax \leq b,\\
    49 * \mu_i \cdot (Ax - b)_i = 0, & i \in \{1, \dots, m\},\\
    50 * \mu \geq 0.
    51 * \end{array}
    52 * \f]
    53 * where \f$\mu\f$ are the Lagrangian variables. Each of the complementarity constraints \f$\mu_i \cdot (Ax - b)_i = 0\f$
    54 * is enforced via an SOS1 constraint for \f$\mu_i\f$ and an additional slack variable \f$s_i = (Ax - b)_i\f$.
    55 *
    56 * For mixed-binary QPs, the KKT-like conditions are
    57 * \f[
    58 * \begin{array}{ll}
    59 * Q x + c + A^T \mu + I_J \lambda = 0,\\
    60 * Ax \leq b,\\
    61 * x_j \in \{0,1\} & j \in J,\\
    62 * (1 - x_j) \cdot z_j = 0 & j \in J,\\
    63 * x_j \cdot (z_j - \lambda_j) = 0 & j \in J,\\
    64 * \mu_i \cdot (Ax - b)_i = 0 & i \in \{1, \dots, m\},\\
    65 * \mu \geq 0,
    66 * \end{array}
    67 * \f]
    68 * where \f$J = \{1,\dots, p\}\f$, \f$\mu\f$ and \f$\lambda\f$ are the Lagrangian variables, and \f$I_J\f$ is the
    69 * submatrix of the \f$n\times n\f$ identity matrix with columns indexed by \f$J\f$. For the derivation of the KKT-like
    70 * conditions, see
    71 *
    72 * Branch-And-Cut for Complementarity and Cardinality Constrained Linear Programs,@n
    73 * Tobias Fischer, PhD Thesis (2016)
    74 *
    75 * Algorithmically:
    76 *
    77 * - we handle the quadratic term variables of the quadratic constraint like in the method
    78 * presolveAddKKTQuadQuadraticTerms()
    79 * - we handle the bilinear term variables of the quadratic constraint like in the method presolveAddKKTQuadBilinearTerms()
    80 * - we handle the linear term variables of the quadratic constraint like in the method presolveAddKKTQuadLinearTerms()
    81 * - we handle linear constraints in the method presolveAddKKTLinearConss()
    82 * - we handle aggregated variables in the method presolveAddKKTAggregatedVars()
    83 *
    84 * we have a hashmap from each variable to the index of the dual constraint in the KKT conditions.
    85 */
    86
    87/*---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9----+----0----+----1----+----2*/
    88
    89#ifndef __SCIP_PRESOL_QPKKTREF_H__
    90#define __SCIP_PRESOL_QPKKTREF_H__
    91
    92#include "scip/def.h"
    93#include "scip/type_retcode.h"
    94#include "scip/type_scip.h"
    95
    96#ifdef __cplusplus
    97extern "C" {
    98#endif
    99
    100/** creates the QP KKT reformulation presolver and includes it in SCIP
    101 *
    102 * @ingroup PresolverIncludes
    103 */
    104SCIP_EXPORT
    106 SCIP* scip /**< SCIP data structure */
    107 );
    108
    109#ifdef __cplusplus
    110}
    111#endif
    112
    113#endif
    common defines and data types used in all packages of SCIP
    SCIP_RETCODE SCIPincludePresolQPKKTref(SCIP *scip)
    type definitions for return codes for SCIP methods
    enum SCIP_Retcode SCIP_RETCODE
    Definition: type_retcode.h:63
    type definitions for SCIP's main datastructure