UNIVERSITY OF TWENTE.

Simple odd β -cycle inequalities for binary polynomial optimization

Matthias Walter (Uni Twente)

Joint work with Alberto del Pia (Uni Wisconsin-Madison)

Let's SCIP it! A workshop to celebrate 20 years of SCIP, 2022

UNIVERSITY OF TWENTE.

Simple odd β -cycle inequalities for binary polynomial optimization

Joint work with Alberto del Pia (Uni Wisconsin-Madison)

Let's SCIP it! A workshop to celebrate 20 years of SCIP, 2022

Multilinear Polytope

Building blocks

Separation Algo

Computations

Conclusions

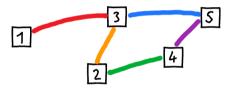
Definition – Boolean quadric polytope

[Padberg '88]

Let G = (V, E) be a graph. The **boolean quadric polytope** of G is the polytope

$$\mathsf{BQP}(G) \coloneqq \mathsf{conv}\,\big\{(x,y) \in \{0,1\}^V \times \{0,1\}^E : y_{\{u,v\}} = x_u \cdot x_v \text{ for each edge } \{u,v\} \in E\big\}.$$

Example:



$$Y_{\{1,3\}} = X_1 \cdot X_3$$
 $Y_{\{2,3\}} = X_2 \cdot X_3$
 $Y_{\{2,4\}} = X_2 \cdot X_4$

$$\chi_{\{3,5\}} = \chi_3 \cdot \chi_5$$

 $\chi_{\{4,5\}} = \chi_4 \cdot \chi_5$
 $\chi_{\{6,5\}} = \chi_4 \cdot \chi_5$

Remarks:

- ► Equivalent to CUT polytope of related graph.
- ► Can be used to minimize a quadratic function q(x) over $x \in \{0,1\}^n$, also known as "quadratic unconstrained binary optimization".
- Optimization over BQP is NP-hard in general.

[Barahona, Mahjoub '86]

Multilinear Polytope

Building blocks

Separation Algo

Computations

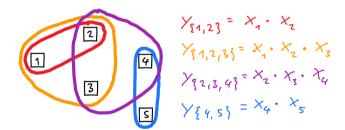
Conclusions

Definition – Multilinear polytope [Del Pia, Khajavirad '16; Buchheim, Crama, Rodríguez-Heck '16]

Let G = (V, E) be a hypergraph. The <u>multilinear</u> polytope of G is the polytope

$$\mathsf{ML}(G) \coloneqq \mathsf{conv}\left\{\left(x,y\right) \in \left\{0,1\right\}^V \times \left\{0,1\right\}^E : y_e = \prod_{v \in e} x_v \text{ for each edge } \left\{u,v\right\} \in E\right\}.$$

Example:



Remarks:

- ▶ Can be used to minimize a polynomial function p(x) over $x \in \{0,1\}^n$, also known as "polynomial unconstrained binary optimization" or "pseudo-boolean optimization".
- ▶ For each hyperedge $e = \{v_1, v_2, \dots, v_k\}$, we have the logic AND constraint $y_e = x_{v_1} \land x_{v_2} \land \dots \land x_{v_k}$.

Separation Algo

Proposition – Standard relaxation [Fortet '60; Glover, Woolsey '74]

Let G = (V, E) be a hypergraph. The polytope SR(G) defined by

$$0 \le y_e \le x_v \le 1$$
 $\forall v \in e \in E$ (1a)

$$y_e + \sum_{v \in e} (1 - x_v) \ge 1$$
 $\forall e \in E$ (1b)

yields an IP formulation, i.e., $SR(G) \cap \mathbb{Z}^{V+E} = ML(G) \cap \mathbb{Z}^{V+E}$.

Multilinear Polytope E

(1a)

Building blocks

Separation Algo Computations

0

Proposition - Standard relaxation [Fortet '60; Glover, Woolsey '74]

Let G = (V, E) be a hypergraph. The polytope SR(G) defined by

$$0 \le y_e \le x_v \le 1 \qquad \qquad \forall v \in e \in E$$

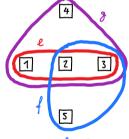
$$y_e + \sum (1 - x_v) \ge 1$$
 $\forall e \in E$ (1b)

yields an IP formulation, i.e., $SR(G) \cap \mathbb{Z}^{V+E} = ML(G) \cap \mathbb{Z}^{V+E}$.

Berge cycle:

 $v_1, e_1, v_2, e_2, \ldots, v_k, e_k, v_1$ with:

- $ightharpoonup v_i \in V$ are distinct nodes.
- $ightharpoonup e_i \in E$ are distinct edges.
- $ightharpoonup v_i \in e_{i-1} \cap e_i$ for each i



Multilinear Polytope

Building blocks

Separation Algo Computations

0

Conclusions

Proposition – Standard relaxation [Fortet '60; Glover, Woolsey '74]

Let G = (V, E) be a hypergraph. The polytope SR(G) defined by

$$0 \le y_e \le x_v \le 1 \qquad \qquad \forall v \in e \in E \qquad \qquad \text{(1a)}$$

$$y_e + \sum_{v \in V} (1 - x_v) \ge 1$$
 $\forall e \in E$ (1b)

yields an IP formulation, i.e., $SR(G) \cap \mathbb{Z}^{V+E} = ML(G) \cap \mathbb{Z}^{V+E}$.

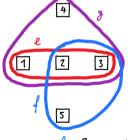
Theorem – Perfect formulation [Del Pia, Khajavirad '16; Buchheim, Crama, Rodríguez-Heck '16]

SR(G) = ML(G) holds if and only if G is **Berge-acyclic**.

Berge cycle:

 $v_1, e_1, v_2, e_2, \dots, v_k, e_k, v_1$ with:

- $ightharpoonup v_i \in V$ are distinct nodes.
- $ightharpoonup e_i \in E$ are distinct edges.
- $ightharpoonup v_i \in e_{i-1} \cap e_i$ for each i



Multilinear Polytope

Building blocks

Separation Algo Computations

Conclusions

Proposition – Standard relaxation [Fortet '60; Glover, Woolsey '74]

Let G = (V, E) be a hypergraph. The polytope SR(G) defined by

$$0 \le y_e \le x_v \le 1$$
 $\forall v \in e \in E$ (1a)

$$y_e + \sum_{v \in e} (1 - x_v) \ge 1$$
 $\forall e \in E$ (1b)

yields an IP formulation, i.e., $SR(G) \cap \mathbb{Z}^{V+E} = ML(G) \cap \mathbb{Z}^{V+E}$.

Theorem – Perfect formulation [Del Pia, Khajavirad '16; Buchheim, Crama, Rodríguez-Heck '16]

SR(G) = ML(G) holds if and only if G is **Berge-acyclic**.

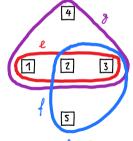
Remark:

▶ There exist several definitions of cycles in hypergraphs, such as Berge cycles. β -cycles, γ -cycles.

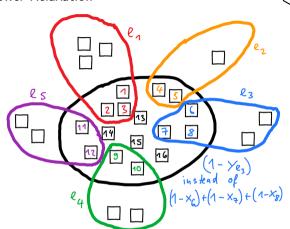
Berge cycle:

 $v_1, e_1, v_2, e_2, \dots, v_k, e_k, v_1$ with:

- $ightharpoonup v_i \in V$ are distinct nodes.
- $ightharpoonup e_i \in E$ are distinct edges.
- $ightharpoonup v_i \in e_{i-1} \cap e_i$ for each i



Flower Relaxation



Definition – Flower relaxation [Del Pia, Khajavirad '18]

The k-flower inequality centered at f with neighbors e_1, e_2, \ldots, e_k is

$$y_f + \sum_{i=1}^k (1 - y_{e_i}) + \sum_{v \in R} (1 - x_v) \ge 1,$$
 (2)

where $R := f \setminus \bigcup_{i=1}^k e_i$ contains all nodes of v that are not in a leaf. We denote by FR(G) the standard relaxation SR(G), augmented by all 1-flower and all 2-flower inequalities.

For comparison:
$$y_f + \sum_{v \in f} (1 - x_v) \ge 1$$
 (1b)

Flower Relaxation

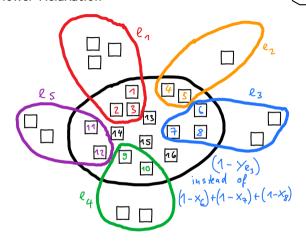
Multilinear Polytope

Building blocks

Separation Algo

Computations

Conclusions



Definition – Flower relaxation [Del Pia, Khajavirad '18]

The k-flower inequality centered at f with neighbors e_1, e_2, \ldots, e_k is

$$y_f + \sum_{i=1}^{K} (1 - y_{e_i}) + \sum_{v \in R} (1 - x_v) \ge 1,$$
 (2)

where $R := f \setminus \bigcup_{i=1}^k e_i$ contains all nodes of v that are not in a leaf. We denote by FR(G) the standard relaxation SR(G), augmented by all 1-flower and all 2-flower inequalities.

For comparison:
$$y_f + \sum_{v \in f} (1 - x_v) \ge 1$$
 (1b)

Special case and generalization:

- ▶ 1-flower inequalities were independently introduced as **2-link inequalities**. [Crama, Rodríguez-Heck '17]
- ► Flower inequalities can be generalized to running intersection inequalities. [Del Pia, Khajavirad '21]

Definition – **Odd** β -cycle inequalities

[Del Pia, Di Gregorio '19]

Definition 2. Consider a hypergraph G = (V, E), let $C = v_1, e_1, v_2, \ldots, v_m, e_m, v_1$ be a β -cycle in G, and let E^- , E^+ be a partition of E(C) such that $k := |E^-|$ is odd and $e_1 \in E^-$. Let $D := \{e_{p+1}, e_{p+2}, \ldots, e_m\}$, where e_p is the last edge in C that belongs to E^- . We denote by f_1, \ldots, f_k the subsequence of e_1, \ldots, e_m of the edges in E^- . Let $S_1 := (\bigcup_{e \in E^-} e) \setminus \bigcup_{e \in E^+} e$ and $S_2 := V(C) \setminus \bigcup_{e \in E^-} e$. With this notation in place, we make the following assumptions:

- (a) Every node $v \in \bigcup_{i=1}^m e_i$ is contained in at most two edges among e_1, \ldots, e_m .
- (b) For every edge $e_i \in E^+ \setminus D$, every edge in E^- adjacent to e_i (if any) is either e_{i-1} or e_{i+1} .
- (c) No edge in D is adjacent to an edge f_i with i even.
- (d) At least one of the following two conditions holds:
- (d1) For every $v \in S_1$, either v is contained in just one edge $e \in E^-$, or it is contained in two edges f_i, f_j with i odd and j even.
 - (d2) For every $e' \in E^-$ and $e'' \in D$ such that $e' \cap e'' \neq \emptyset$, then either $e' = e_1$, $e'' = e_m$ or $e' = e_p$, $e'' = e_{p+1}$.

$$\sum_{v \in S_1} z_v - \sum_{e \in E^-} z_e - \sum_{v \in S_2} z_v + \sum_{e \in E^+} z_e \le |S_1| - |\{i \in \{1, \dots, m\} : e_i, e_{i+1} \in E^-\}| + \left\lfloor \frac{k}{2} \right\rfloor. \tag{2}$$

Definition 2. Consider a hypergraph G = (V, E), let $C = v_1, e_1, v_2, \ldots, v_m, e_m, v_1$ be a β -cycle in G, and let E^- , E^+ be a partition of E(C) such that $k := |E^-|$ is odd and $e_1 \in E^-$. Let $D := \{e_{p+1}, e_{p+2}, \ldots, e_m\}$, where e_p is the last edge in C that belongs to E^- . We denote by f_1, \ldots, f_k the subsequence of e_1, \ldots, e_m of the edges in E^- . Let $S_1 := (\cup_{e \in E^-} e) \setminus \bigcup_{e \in E^+} e$ and $S_2 := V(C) \setminus \bigcup_{e \in E^-} e$. With this notation in place, we make the following assumptions:

- (a) Every node $v \in \bigcup_{i=1}^m e_i$ is contained in at most two edges among e_1, \ldots, e_m .
- (b) For every edge $e_i \in E^+ \setminus D$, every edge in E^- adjacent to e_i (if any) is either e_{i-1} or e_{i+1} .
- (c) No edge in D is adjacent to an edge f_i with i even.
- (d) At least one of the following two conditions holds:
- (d1) For every $v \in S_1$, either v is contained in just one edge $e \in E^-$, or it is contained in two edges f_i, f_j with i odd and j even.
 - (d2) For every $e' \in E^-$ and $e'' \in D$ such that $e' \cap e'' \neq \emptyset$, then either $e' = e_1$, $e'' = e_m$ or $e' = e_p$, $e'' = e_{p+1}$.

$$\sum_{v \in S_1} z_v - \sum_{e \in E^-} z_e - \sum_{v \in S_2} z_v + \sum_{e \in E^+} z_e \le |S_1| - |\{i \in \{1, \dots, m\} : e_i, e_{i+1} \in E^-\}| + \left\lfloor \frac{k}{2} \right\rfloor. \tag{2}$$

Definition – Odd β -cycle inequalities

[Del Pia, Di Gregorio '19]

Definition 2. Consider a hypergraph G = (V, E), let $C = v_1, v_2, \ldots, v_m, v_m, v_n$ be a β -cycle in G, and let E^-, E^+ be a partition of E(C) such that $k := |E^-|$ is odd and $e_1 \in E^-$. Let $D := \{e_{p+1}, e_{p+2}, \dots, e_m\}$, where e_p is the last edge in C that belongs to E^- . We denote by f_1, \ldots, f_k the subsequence of e_1, \ldots, e_m of the edges in E^- . Let $S_1 := (\bigcup_{e \in E^-} e) \setminus \bigcup_{e \in E^+} e$ and $S_2 := V(C) \setminus \bigcup_{e \in F^-} e$. With this notation in place, we make the following assumptions:

- (a) Every node $v \in \bigcup_{i=1}^m e_i$ is contained in at most two edges among e_1, \ldots, e_m .
- (b) For every edge $e_i \in E^+ \setminus D$, every edge in E^- adjacent to e_i (if any) is either e_{i-1} or e_{i+1} .
- (c) No edge in D is adjacent to an edge f_i with i even. (d) At least one of the following two conditions holds:
- (d1) For every $v \in S_1$, either v is contained in just one edge $e \in E^-$, or it is contained in two edges f_i, f_i with i odd and i even.
- (d2) For every $e' \in E^-$ and $e'' \in D$ such that $e' \cap e'' \neq \emptyset$, then either $e' = e_1$, $e'' = e_m$ or $e' = e_n$, $e'' = e_{n+1}$.

$$\sum_{v \in S_1} z_v - \sum_{e \in E^-} z_e - \sum_{v \in S_2} z_v + \sum_{e \in E^+} z_e \le |S_1| - |\{i \in \{1, \dots, m\} : e_i, e_{i+1} \in E^-\}| + \left\lfloor \frac{k}{2} \right\rfloor. \tag{2}$$

Definition – **Odd** β -cycle inequalities

[Del Pia, Di Gregorio '19]

Definition 2. Consider a hypergraph G = (V, E), let $C = v_{1}, e_{1}, v_{2}, \ldots, v_{m}, e_{m}, v_{1}$ be a β -cycle in G, and let E^{-} , E^{+} be a partition of E(C) such that $k := [E^{-}]$ is odd and $e_{1} \in E^{-}$. Let $D := \{e_{p+1}, e_{p+2}, \ldots, e_{m}\}$, where e_{p} is the last edge in C that belongs to E^{-} . We denote by f_{1}, \ldots, f_{k} the subsequence of e_{1}, \ldots, e_{m} of the edges in E^{-} . Let $S_{1} := (\bigcup_{e \in E^{-}} e) \setminus \bigcup_{e \in E^{+}} e$ and $S_{2} := V(C) \setminus \bigcup_{m \in E^{-}} e$. With this notation in place, we make the following assumptions:

- (a) Every node $v \in \bigcup_{i=1}^m e_i$ is contained in at most two edges among e_1, \ldots, e_m .
- (b) For every edge $e_i \in E^+ \setminus D$, every edge in E^- adjacent to e_i (if any) is either e_{i-1} or e_{i+1} .
- (c) No edge in D is adjacent to an edge f_i with i even. (d) At least one of the following two conditions holds:
- (d1) For every $v \in S_1$, either v is contained in just one edge $e \in E^-$, or it is contained in two edges f_i, f_j with i odd and j even.
 - (d2) For every $e' \in E^-$ and $e'' \in D$ such that $e' \cap e'' \neq \emptyset$, then either $e' = e_1$, $e'' = e_m$ or $e' = e_p$, $e'' = e_{p+1}$.

$$\sum_{v \in S_1} z_v - \sum_{e \in E^-} z_e - \sum_{v \in S_2} z_v + \sum_{e \in E^+} z_e \le |S_1| - |\{i \in \{1, \dots, m\} : e_i, e_{i+1} \in E^-\}| + \left\lfloor \frac{k}{2} \right\rfloor. \tag{2}$$

Definition – **Odd** β -cycle inequalities

[Del Pia, Di Gregorio '19]

Let G = (V, E) be a hypergraph. If there is a β -cycle C with a certain edge bipartition and some extra definitions satisfying some extra properties, then

(some inequality with complicated coefficients and complicated right-hand side)

is called **odd** β -**cycle inequality** and valid for ML(G).

Multilinear Polytope Building blocks Separation Algo Computations Conclusions

OOOO●O O O O OOOOO O

Definition – **Odd** β -cycle inequalities

Odd β -Cycle Inequalities

[Del Pia, Di Gregorio '19]

Let G = (V, E) be a hypergraph. If there is a β -cycle C with a certain edge bipartition and some extra definitions satisfying some extra properties, then

 $\langle some \ inequality \ with \ complicated \ coefficients \ and \ complicated \ right-hand \ side \rangle$

is called **odd** β -cycle inequality and valid for ML(G).

Theorem – CG rank [Del Pia, Di Gregorio '19]

Odd β -cycle inequalities have Chvátal rank 2 (w.r.t. SR).

Definition – Odd β -cycle inequalities

[Del Pia, Di Gregorio '19]

Computations

Let G = (V, E) be a hypergraph. If there is a β -cycle C with a certain edge bipartition and some extra definitions satisfying some extra properties, then

 $\langle some\ inequality\ with\ complicated\ coefficients\ and\ complicated\ right-hand\ side \rangle$

is called **odd** β -**cycle inequality** and valid for ML(G).

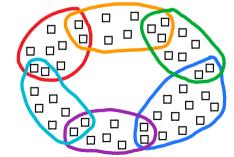
Theorem – CG rank [Del Pia, Di Gregorio '19]

Odd β -cycle inequalities have Chvátal rank 2 (w.r.t. SR).

Theorem – Perfection [Del Pia, Di Gregorio '19]

For **cyclic hypergraphs** G, ML(G) is completely described by FR(G) plus odd β -cycle inequalities.

Cyclic hypergraph:



Definition – **Odd** β -cycle inequalities

[Del Pia, Di Gregorio '19]

Let G = (V, E) be a hypergraph. If there is a β -cycle C with a certain edge bipartition and some extra definitions satisfying some extra properties, then

⟨some inequality with complicated coefficients and complicated right-hand side⟩

is called **odd** β -**cycle inequality** and valid for ML(G).

Theorem – CG rank [Del Pia, Di Gregorio '19]

Odd β -cycle inequalities have Chvátal rank 2 (w.r.t. SR).

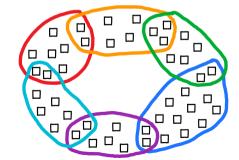
Theorem – Perfection [Del Pia, Di Gregorio '19]

For **cyclic hypergraphs** G, ML(G) is completely described by FR(G) plus odd β -cycle inequalities.

Theorem – Separation [Del Pia, Di Gregorio '19]

For **cyclic hypergraphs**, the separation problem for odd β -cycle inequalities can be solved in polynomial time.

Cyclic hypergraph:



Multilinear Polytope ○○○○○● Building blocks

Separation Algo Computations

0 0

Conclusions

[Del Pia, Walter '22]

Definition – Simple Odd β -cycle inequalities

(see next slides)

Remark:

► The new definition yields weaker inequalities in general!

Theorem – CG rank

[Del Pia, Walter '22]

Simple odd β -cycle inequalities have Chvátal rank 2 (with respect to the standard relaxation SR).

Theorem – Perfection

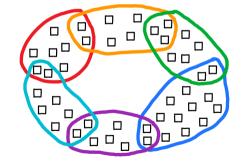
[Del Pia, Walter '22]

For cyclic hypergraphs G, ML(G) is completely described by FR(G) plus **simple** odd β -cycle inequalities.

Theorem – Separation [Del Pia, Walter '22]

For **arbitrary hypergraphs**, the separation problem for **simple** odd β -cycle inequalities can be solved in polynomial time.

Cyclic hypergraph:



We consider an edge sequence e, f, g with $U = e \cap f$, $W = f \cap g$:

Lemma - Building block inequalities

The following **building block inequalities** $s(x, y) \ge 0$ are valid for FR(G).

$$2y_f - 1 + \sum_{u \in U} (1 - x_u) + \sum_{w \in W} (1 - x_w) + \sum_{v \in f \setminus (U \cup W)} (2 - 2x_v) \ge 0$$

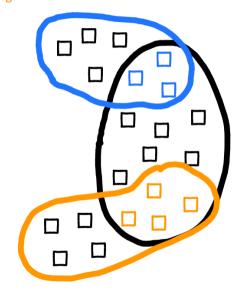
$$2y_f - 1 + (1 - y_e) + \sum_{w \in W} (1 - x_w) + \sum_{v \in f \setminus (U \cup W)} (2 - 2x_v) \ge 0$$

$$2y_f - 1 + \sum_{u \in U} (1 - x_u) + (1 - y_g) + \sum_{v \in f \setminus (U \cup W)} (2 - 2x_v) \ge 0$$

$$2y_f - 1 + (1 - y_e) + (1 - y_g) + \sum_{v \in f \setminus (U \cup W)} (2 - 2x_v) \ge 0$$

$${\color{red} x_u-2y_e+x_w\geq 0}$$

$$x_v - y_e \ge 0$$



Example:

ample:
$$2y_{e_1} - 1 + (1-x_1) + (1-x_2) + (1-x_3) + (2-2x_4) + (1-x_5) + (1-x_6) \ge 0$$

$$2y_{e_8} - 1 + (1-x_1) + (1-x_2) + (1-x_3) = 0$$

$$+ (1-x_2) \ge 0$$

$$2y_{e_1} - 1 + (1-x_2) + (1-x_3) = 0$$

$$+ (1-x_2) \ge 0$$

$$2y_{e_2} - 1 + (1-x_5) + (1-x_6) = 0$$

$$2y_{e_2} - 1 + (1-x_5) + (1-x_6) = 0$$

$$2y_{e_2} - 1 + (1-x_5) + (1-x_6) = 0$$

$$2y_{e_2} - 1 + (1-x_5) + (1-x_6) = 0$$

$$2y_{e_2} - 1 + (1-x_5) + (1-x_6) = 0$$

$$2y_{e_2} - 1 + (1-x_5) + (1-x_6) = 0$$

$$2y_{e_2} - 1 + (1-x_5) + (1-x_6) = 0$$

$$2y_{e_2} - 1 + (1-x_5) + (1-x_6) = 0$$

$$2y_{e_2} - 1 + (1-x_5) + (1-x_6) = 0$$

$$2y_{e_2} - 1 + (1-x_5) + (1-x_6) = 0$$

$$2y_{e_2} - 1 + (1-x_5) + (1-x_6) = 0$$

$$2y_{e_2} - 1 + (1-x_5) + (1-x_6) = 0$$

$$2y_{e_2} - 1 + (1-x_5) + (1-x_6) = 0$$

$$2y_{e_2} - 1 + (1-x_5) + (1-x_6) = 0$$

$$2y_{e_2} - 1 + (1-x_5) + (1-x_6) = 0$$

$$2y_{e_2} - 1 + (1-x_5) + (1-x_6) = 0$$

$$2y_{e_2} - 1 + (1-x_5) + (1-x_6) = 0$$

$$2y_{e_2} - 1 + (1-x_5) + (1-x_6) = 0$$

$$2y_{e_2} - 1 + (1-x_5) + (1-x_6) = 0$$

$$2y_{e_2} - 1 + (1-x_5) + (1-x_6) = 0$$

$$2y_{e_2} - 1 + (1-x_5) + (1-x_6) = 0$$

$$2y_{e_2} - 1 + (1-x_5) + (1-x_6) = 0$$

$$2y_{e_2} - 1 + (1-x_5) + (1-x_6) = 0$$

$$2y_{e_2} - 1 + (1-x_5) + (1-x_6) = 0$$

$$2y_{e_2} - 1 + (1-x_5) + (1-x_6) = 0$$

$$2y_{e_2} - 1 + (1-x_5) + (1-x_6) = 0$$

$$2y_{e_2} - 1 + (1-x_5) + (1-x_6) = 0$$

$$2y_{e_2} - 1 + (1-x_5) + (1-x_6) = 0$$

$$2y_{e_2} - 1 + (1-x_5) + (1-x_6) = 0$$

$$2y_{e_2} - 1 + (1-x_5) + (1-x_6) = 0$$

$$2y_{e_2} - 1 + (1-x_5) + (1-x_6) = 0$$

$$2y_{e_2} - 1 + (1-x_5) + (1-x_6) = 0$$

$$2y_{e_2} - 1 + (1-x_5) + (1-x_6) = 0$$

$$2y_{e_2} - 1 + (1-x_6) = 0$$

Example:

nple:
$$2 \times_{e_1} - 1 + (1 - x_4) + (1 - x_2) + (1 - x_5) + (2 - 2x_4) + (1 - x_5) + (1 - x_6) \ge 0$$

$$2 \times_{e_3} - 1 + (1 - x_1) + (1 - x_2) + (1 - x_3) = 0$$

$$+ (1 - x_2) \stackrel{\geq 0}{=} 0 \text{ add}$$

$$2 \times_{e_3} - 1 + (1 - x_2) + (1 - x_3) = 0$$

$$+ (1 - x_2) \stackrel{\geq 0}{=} 0 \text{ add}$$

$$2 \times_{e_3} - 1 + (1 - x_5) + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_5) + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_5) + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_5) + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_5) + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_5) + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_5) + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_5) + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_5) + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_5) + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_5) + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_5) + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_5) + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_5) + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_5) + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_5) + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_5) + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_5) + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_5) + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_5) + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_5) + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_5) + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_5) + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_5) + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_5) + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_5) + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_5) + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_5) + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_6) = 0$$

$$2$$

Validity arguments in general:

Add building blocks along a cyclic walk such that overlapping terms add up to something even.

2 yeu - 1 + (1 - Yez)

Computations

nple:
$$2 \times_{e_1} - 1 + (1 - x_4) + (1 - x_2) + (1 - x_3) + (2 - 2x_4) + (1 - x_5) + (1 - x_6) \ge 0$$

$$2 \times_{e_3} - 1 + (1 - x_4) + (1 - x_2) + (1 - x_3) = 0$$

$$+ (1 - x_2) \stackrel{\geq O}{=}_{g_1} \text{ odd}$$

$$2 \times_{e_2} - 1 + (1 - x_5) + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_5) + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_5) + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_5) + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_5) + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_5) + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_5) + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_5) + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_5) + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_5) + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_5) + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_5) + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_5) + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_5) + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_5) + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_6) = 0$$

$$2 \times_{e_3} - 1 + (1 - x_6) = 0$$

$$2 \times_{e_$$

11

 $\times_{16} - \times_{e_{5}} \ge 0$ ℓ_{4} , and $+(2-2x_{12})+(2-2x_{13})+(1-x_{e_{5}})\ge 0$ Validity arguments in general:

X11 - Y21 20

l₆, even

Add building blocks along a cyclic walk such that overlapping terms add up to something even.

12

This yields a new valid inequality with only even coefficients.

Example:

Imple:
$$2 \times_{e_1} - 1 + (1 - x_1) + (1 - x_2) + (1 - x_3) + (2 - 2x_4) + (1 - x_5) + (1 - x_6) \ge 0$$

$$2 \times_{e_3} - 1 + (1 - x_1) + (1 - x_2) + (1 - x_3) = 0$$

$$+ (1 - x_2) \xrightarrow{\geq 0} 0 \text{ and } 0 \text{ and }$$

Validity arguments in general:

- Add building blocks along a cyclic walk such that overlapping terms add up to something even.
- This yields a new valid inequality with only even coefficients.
- If the first four building blocks occur an odd number of times, the right-hand side is odd.

Example:
$$2y_{e_1} - 1 + (1 - x_1) + (1 - x_2) + (1 - x_3) + (2 - 2x_4) + (1 - x_5) + (1 - x_6) \ge 0$$

$$2y_{e_3} - 1 + (1 - x_1) + (1 - x_2) + (1 - x_3) \quad e_{11} \text{ odd} \qquad 2y_{e_2} - 1 + (1 - x_5) + (1 - x_6) +$$

Validity arguments in general:

- Add building blocks along a cyclic walk such that overlapping terms add up to something even.
- This yields a new valid inequality with only even coefficients.
- If the first four building blocks occur an odd number of times, the right-hand side is odd.
- Hence, we can increase right-hand side by 1. (or: scale by $\frac{1}{2}$ and round rhs up)

- ▶ Auxiliary nodes (c, p) where c is a "connection point" $(V \cup E \cup \{e \cap f : e, f \in E\})$ and $p \in \{\pm 1\}$ is a parity.
- Auxiliary edges from (c, p) to (c', p') for building block inequality $s(x, y) \ge 0$ between connection points c and c'. Parities $p \ne p'$ if and only if one of first four inequalities.
- ▶ Length of edge: slack $s(\hat{x}, \hat{y})$ for given vector (\hat{x}, \hat{y}) .

- ▶ Auxiliary nodes (c, p) where c is a "connection point" $(V \cup E \cup \{e \cap f : e, f \in E\})$ and $p \in \{\pm 1\}$ is a parity.
- Auxiliary edges from (c, p) to (c', p') for building block inequality $s(x, y) \ge 0$ between connection points c and c'. Parities $p \ne p'$ if and only if one of first four inequalities.
- ► Length of edge: slack $s(\hat{x}, \hat{y})$ for given vector (\hat{x}, \hat{y}) .

Lemma - Reduction to shortest odd cycle problem

[Del Pia, Walter '22]

Walks from (c,p) to (c,-p) of length less than $1 \longleftrightarrow \text{simple odd } \beta\text{-cycle inequality violated by } (\hat{x},\hat{y})$

- ▶ Auxiliary nodes (c, p) where c is a "connection point" $(V \cup E \cup \{e \cap f : e, f \in E\})$ and $p \in \{\pm 1\}$ is a parity.
- Auxiliary edges from (c, p) to (c', p') for building block inequality $s(x, y) \ge 0$ between connection points c and c'. Parities $p \ne p'$ if and only if one of first four inequalities.
- ► Length of edge: slack $s(\hat{x}, \hat{y})$ for given vector (\hat{x}, \hat{y}) .

Lemma - Reduction to shortest odd cycle problem

[Del Pia, Walter '22]

Walks from (c, p) to (c, -p) of length less than $1 \longleftrightarrow \text{simple odd } \beta\text{-cycle inequality violated by } (\hat{x}, \hat{y})$

Consequence:

Theorem - Separation algorithm

[Del Pia, Walter '22]

Let G=(V,E) be a hypergraph and let $(\hat{x},\hat{y})\in FR(G)$. The separation problem for simple odd β -cycle inequalities can be solved in time $\mathcal{O}(|E|^5+|V|^2\cdot|E|)$.

- \blacktriangleright Auxiliary nodes (c, p) where c is a "connection point" $(V \cup E \cup \{e \cap f : e, f \in E\})$ and $p \in \{\pm 1\}$ is a parity.
- Auxiliary edges from (c, p) to (c', p') for building block inequality $s(x, y) \ge 0$ between connection points c and c'. Parities $p \neq p'$ if and only if one of first four inequalities.
- ► Length of edge: slack $s(\hat{x}, \hat{y})$ for given vector (\hat{x}, \hat{y}) .

Lemma - Reduction to shortest odd cycle problem

[Del Pia, Walter '22]

Walks from (c, p) to (c, -p) of length less than $1 \longleftrightarrow \text{simple odd } \beta$ -cycle inequality violated by (\hat{x}, \hat{y})

Consequence:

Theorem – Separation algorithm

[Del Pia. Walter '22]

Let G = (V, E) be a hypergraph and let $(\hat{x}, \hat{y}) \in FR(G)$. The separation problem for simple odd β -cycle inequalities can be solved in time $\mathcal{O}(|E|^5 + |V|^2 \cdot |E|)$.

Proof:

By the lemma above, it suffices to run Dijkstra's algorithm once for per connection point.

9 / 15

20 years of SCIP

Preliminary Computational Results

Multilinear Polytope
Social Separation Algo
Separation Algo
Separation Algo
Social Separation Algo
Soc

Implementation:

- ▶ Plugin for SCIP solver framework that inspects all AND constraints and builds hypergraph G.
- ► Separation is done by increasing complexity:
 - \bullet Violated inequalities from SR(G).
 - Violated 1-flower inequalities.
 Violated 2 flower inequalities.
 - **3** Violated 2-flower inequalities.
 - **4** Violated simple odd β -cycle inequalities.

Preliminary Computational Results

Multilinear Polytope Suilding blocks Separation Algo Computations Conclusions On Conclusion

Implementation:

▶ Plugin for SCIP solver framework that inspects all AND constraints and builds hypergraph G.

- ► Separation is done by increasing complexity:
 - \bullet Violated inequalities from SR(G).
 - Violated 1-flower inequalities.
 - **3** Violated 2-flower inequalities.
 - **4** Violated simple odd β -cycle inequalities.

Instances:

• Image restoration instances from computer vision.

- [used by Crama, Rodríguez-Heck '17]
- Low autocorrelated binary sequence problem from POLIP / MINLPLib benchmark libraries for polynomial / mixed-integer nonlinear optimization. [used by Del Pia, Di Gregorio '21]
- ▶ For both, the maximum polynomial degree is 4, i.e., $|e| \le 4$ for all $e \in E$.

Multilinear Polytope

Building blocks

Separation Algo Computations

Conclusions

Implementation:

- ▶ Plugin for SCIP solver framework that inspects all AND constraints and builds hypergraph G.
- ► Separation is done by increasing complexity:
 - \bullet Violated inequalities from SR(G).
 - 2 Violated 1-flower inequalities.
 - 3 Violated 2-flower inequalities.
 - **4** Violated simple odd β -cycle inequalities.

Instances:

• Image restoration instances from computer vision.

[used by Crama, Rodríguez-Heck '17]

- Low autocorrelated binary sequence problem from POLIP / MINLPLib benchmark libraries for polynomial / mixed-integer nonlinear optimization. [used by Del Pia, Di Gregorio '21]
- ▶ For both, the maximum polynomial degree is 4, i.e., $|e| \le 4$ for all $e \in E$.

Experiment:

- Disable all other solver features, i.e., general-purpose cutting planes, presolve (except for linearization of the polynomial), symmetry breaking, restarts, heuristics.
- Compare obtained dual bounds to best known primal solution.
- ► Question to answer: How much gap can these inequalities close?

Income Destroyation	Multilinear Polytope	Building blocks	Separation Algo	Computations	Conclusions
Image Restoration (000000	00	0	0000	0

Table: Remaining gap (in %) and computation time to compute the dual bounds of different relaxations.

Image	V	E	Standard				2-flower		S. odd β -cycle		SCIP cuts	
10×10	100	534	69.30 %	0.1 s	10.33 %	0.3 s	10.33 %	0.3 s	0.0 %	1.9 s	18.69 %	1.5 s
10 imes 15	150	838	43.84 %	0.3 s	8.85 %	0.7 s	8.85 %	0.7 s	0.0 %	3.3 s	12.87%	$1.9\mathrm{s}$
15 imes 15	225	1275	63.00 %	0.7 s	12.80 %	2.4 s	12.80 %	2.4 s	0.0 %	5.3 s	22.47 %	$7.1\mathrm{s}$
15×20	300	1731	38.75 %	$1.1\mathrm{s}$	0.0 %	$1.1\mathrm{s}$	0.0 %	$1.1\mathrm{s}$	0.0 %	$1.4\mathrm{s}$	8.56 %	4.8 s
20×20	400	2353	39.46 %	$1.7\mathrm{s}$	0.14 %	2.8 s	0.14 %	2.8 s	0.0 %	4.8 s	17.86 %	24.2 s
20×25	500	2978	41.48 %	3.2 s	3.86 %	3.9 s	3.86 %	3.9 s	0.11%	$15.1\mathrm{s}$	23.19%	16.0 s
25×25	625	3718	41.00 %	$2.9\mathrm{s}$	0.26 %	$5.2\mathrm{s}$	0.26 %	$5.2\mathrm{s}$	0.04 %	$17.1\mathrm{s}$	11.80%	$12.5\mathrm{s}$

Remark:

► Shown are averages over the 15 instances for each image size.

Image Restoration

Multilinear Polytope Building blocks Separation Algo Computations Conclusions
○○○○○○ ○ ○ ○○○○ ○

Table: Remaining gap (in %) and computation time to compute the dual bounds of different relaxations.

Image	V	E	Standard				2-flower		S. odd β -cycle		SCIP cuts	
10×10	100	534	69.30 %	0.1 s	10.33 %	0.3 s	10.33 %	0.3 s	0.0 %	1.9 s	18.69 %	1.5 s
10 imes 15	150	838	43.84 %	0.3 s	8.85 %	0.7 s	8.85 %	0.7 s	0.0 %	3.3 s	12.87%	$1.9\mathrm{s}$
15 imes 15	225	1275	63.00 %	0.7 s	12.80%	2.4 s	12.80 %	2.4 s	0.0 %	5.3 s	22.47 %	$7.1\mathrm{s}$
15×20	300	1731	38.75 %	$1.1\mathrm{s}$	0.0 %	$1.1\mathrm{s}$	0.0 %	$1.1\mathrm{s}$	0.0 %	$1.4\mathrm{s}$	8.56 %	4.8 s
20×20	400	2353	39.46 %	$1.7\mathrm{s}$	0.14 %	2.8 s	0.14 %	2.8 s	0.0 %	4.8 s	17.86%	24.2 s
20×25	500	2978	41.48 %	$3.2\mathrm{s}$	3.86 %	3.9 s	3.86 %	3.9 s	0.11%	$15.1\mathrm{s}$	23.19%	$16.0\mathrm{s}$
25×25	625	3718	41.00 %	2.9 s	0.26%	$5.2\mathrm{s}$	0.26 %	$5.2\mathrm{s}$	0.04 %	$17.1\mathrm{s}$	11.80%	$12.5\mathrm{s}$

Remark:

► Shown are averages over the 15 instances for each image size.

Observations – Image Restoration Instances

- ► 1-flower inequalities close a lot of gap already.
- ▶ 2-flower inequalities were never violated after adding 1-flowers.
- ightharpoonup Simple odd β -cycle inequalities close almost all of the remaining gap.
- ► General-purpose cutting planes of SCIP are outperformed.

Multilinear Polytope Building blocks Separation Algo

Table: Remaining gap (in %) and computation time to compute the dual bounds of different relaxations.

Instance	V	E	Standa	ırd	1-flower = 2-flower		S. odd β	S. odd β -cycle		uts
20-05	20	187	884.62 %	0.0 s	310.10 %	0.0 s	228.37 %	0.2 s	458.65 %	1.1 s
20-10	20	813	1428.61 %	$0.2\mathrm{s}$	519.41 %	0.6 s	365.8 %	59.0 s	1174.08 %	$0.9\mathrm{s}$
20-15	20	1474	1564.03 %	0.8 s	570.87 %	$2.1\mathrm{s}$	405.3 %	367.0 s	1374.16 %	$1.4\mathrm{s}$
25-06	25	382	1116.67 %	0.1 s	400.00 %	0.2 s	276.04 %	2.2 s	760.52 %	0.9 s
25-13	25	1757	1518.46 %	0.9 s	553.51 %	2.2 s	391.1 %	680.0 s	1344.46 %	$2.3\mathrm{s}$
25-19	25	3015	1645.87 %	2.3 s	602.50 %	6.9 s	\leq 428.67 %	> $1h$	1518.22 %	3.8 s
25-25	25	3652	1730.76 %	3.0 s	633.80 %	9.0 s	\leq 454.81 $\%$	> $1h$	1573.28 %	6.8 s
30-04	30	193	633.33 %	0.0 s	211.11 %	0 s	211.11 %	0.0 s	223.46 %	1.2 s
30-08	30	896	1308.67 %	0.2 s	473.44 %	0.5 s	330.79 %	$15.4\mathrm{s}$	1035.81 %	$1.1\mathrm{s}$
30-15	30	2914	1598.37 %	$1.2\mathrm{s}$	584.75 %	4.1 s	414.39 %	2357.0 s	1428.35 %	4.5 s
30-23	30	5346	1717.31 %	3.5 s	630.39 %	11.8 s	\leq 468.46 %	> $1h$	1634.17 %	7.6 s
30-30	30	6382	1782.08 %	4.8 s	653.86 %	$18.1\mathrm{s}$	\leq 576.22 %	> $1h$	1696.71 %	14.3 s
35-04	35	228	633.33 %	0.0 s	210.94 %	0 s	210.94 %	0.0 s	238.28 %	1.2 s
35-09	35	1346	1417.93 %	0.4 s	516.48 %	$1.0\mathrm{s}$	362.92 %	$59.1\mathrm{s}$	1164.69 %	$2.1\mathrm{s}$
35-18	35	4967	1652.86 %	3.3 s	605.63 %	$10.9\mathrm{s}$	\leq 436.68 %	> $1h$	1577.31 %	8.0 s
35-26	35	8312	1738.75 %	$9.1\mathrm{s}$	638.56 %	36.4 s	\leq 543.43 %	> $1h$	1666.42 %	19.0 s
40-05	40	407	884.62 %	0.0 s	310.26 %	0.1 s	228.21 %	0 s	505.98 %	1.8 s
40-10	40	2013	1498.58 %	0.6 s	547.79 %	2.0 s	386.3 %	139.0 s	1289.21 %	$3.3\mathrm{s}$
40-30	40	7203	1790.20 %	$21.1\mathrm{s}$	658.76 %	94.1 s	unknown	> $1h$	1757.06 %	42.5 s
40-40	40	15344	2246.31 %	33.7 s	839.29 %	202.0 s	unknown	> 1 h	2195.81 %	65.4 s

Computations

00000

Conclusions

 Multilinear Polytope
 Building blocks
 Separation Algo
 Computations
 Conclusions

 ○○○○○○
 ○○
 ○○
 ○○
 ○○

Table: Remaining gap (in %) and computation time to compute the dual bounds of different relaxations.

Instance	V	E	Standard		1-flower = 2	1-flower = 2 -flower		-cycle	SCIP cuts		
45-05	45	462	882.77 %	0.1 s	309.46 %	0 s	227.62 %	0 s	514.98 %	2.9 s	
45-11	45	2768	1558.63 %	$1.1\mathrm{s}$	571.21 %	3.6 s	403.78 %	392.0 s	1415.96 %	5.9 s	
45-23	45	10731	1790.52 %	14.4 s	659.88 %	63.6 s	≤ 575.22 %	> $1h$	1754.46 %	34.7 s	
45-34	45	18303	3270.63 %	47.1 s	1252.4 %	348.0 s	unknown	> $1h$	3216.41 %	94.2 s	
45-45	45	21948	54 456.45 %	94.0 s	21 736.22 %	647.0 s	unknown	> $1h$	53 662.93 %	119.0 s	
50-06	50	832	1116.67 %	0.2 s	400.00 %	0.3 s	275.46 %	3.9 s	794.72 %	1.8 s	
50-13	50	4407	1616.87 %	2.4 s	593.25 %	8.6 s	420.29 %	3131.0 s	1499.09 %	8.0 s	
50-25	50	14362	2133.10 %	26.3 s	797.19 %	$195.0\mathrm{s}$	unknown	> $1h$	2094.17 %	40.9 s	
50-38	50	25396	39 284.44 %	107.0 s	15 696.67 %	1241.0 s	unknown	> $1h$	38 675.21 %	219.0 s	
50-50	50	30221	65 563.27 %	$163.0\mathrm{s}$	26 178.91 %	1424.0 s	unknown	> $1h$	64 675.26 %	206.0 s	
55-06	55	922	1124.83 %	0.2 s	403.36 %	0.4 s	277.94 %	4.3 s	804.18 %	2.1 s	
55-14	55	5735	1687.63 %	4.2 s	621.19 %	15.3 s	≤ 441.43 %	> $1h$	1608.75 %	10.3 s	
55-28	55	19592	12 541.35 %	63.7 s	7270.68 %	231.0 s	unknown	> $1h$	12 352.26 %	96.9 s	
55-41	55	33013	49 516.78 %	189.0 s	\leq 26 840.37 %	> $1h$	unknown	> $1h$	48 682.01 %	403.0 s	
55-55	55	40087	77 649.06 %	320.0 s	\leq 35 170.20 %	> $1h$	unknown	> $1h$	76 351.19 %	507.0 s	
60-08	60	1976	1409.51 %	0.6 s	514.49 %	1.7 s	361.20 %	48.3 s	1227.38 %	3.7 s	
60-15	60	7234	1662.86 %	6.8 s	610.75 %	27.5 s	≤ 435.55 %	> $1h$	1610.77 %	15.9 s	
60-30	60	24720	147 684.48 %	116.0 s	97 525.37 %	1685.0 s	unknown	> $1h$	145 471.15 %	234.0 s	
60-45	60	43129	58 469.68 %	350.0 s	32 242.86 %	2186.0 s	unknown	> $1h$	57 950.54 %	458.0 s	
60-60	60	51970	94 731.68 %	570.0 s	\leq 75 083.58 %	> 1 h	unknown	> 1 h	93 319.83 %	> 1 h	

Observations – Low Autocorrelated Binary Sequences

- ► 1-flower inequalities close a lot of gap already.
- ▶ 2-flower inequalities were never violated after adding 1-flowers.
- General-purpose cutting planes of SCIP are outperformed.

Observations - Low Autocorrelated Binary Sequences

- ► Extremely large gaps in general.
- ► 1-flower inequalities close a lot of gap already.
- ▶ 2-flower inequalities were never violated after adding 1-flowers.
- ► General-purpose cutting planes of SCIP are outperformed.

Low Autocorrelated Binary Sequences (3)

Multilinear Polytope
Social Separation Algo
Separation Algo
Social Separa

Observations - Low Autocorrelated Binary Sequences

- ► Extremely large gaps in general.
- Hypergraphs are quite dense.
- ► 1-flower inequalities close a lot of gap already.
- ▶ 2-flower inequalities were never violated after adding 1-flowers.
- Simple odd β -cycle inequalities are (currently) too expensive.
- General-purpose cutting planes of SCIP are outperformed.

Low Autocorrelated Binary Sequences (3)

Multilinear Polytope Source Separation Algo October Separation Algo October O

Observations - Low Autocorrelated Binary Sequences

[Del Pia, Walter '22]

- ► Extremely large gaps in general.
- ► Hypergraphs are quite dense.
- ► 1-flower inequalities close a lot of gap already.
- ▶ 2-flower inequalities were never violated after adding 1-flowers.
- ▶ Simple odd β -cycle inequalities are (currently) too expensive.
- ► General-purpose cutting planes of SCIP are outperformed.

Remark:

▶ Implementation of 2-flower separation was carefully checked for correctness :-)

Conclusions – Future Research Directions

- ► New inequalities are the right relaxation for separation.
- ► Nice theoretical properties remain!
- ► Strengthening of generated inequalities should be possible.
- ▶ Auxiliary graph is of polynomial size, but $\mathcal{O}(|E|^2 + |V|)$ nodes and $\mathcal{O}(|E|^3 + |E| \cdot |V|)$ edges is not exactly small in practice.

Conclusions - Future Research Directions

[Del Pia, Walter '22]

- ► New inequalities are the right relaxation for separation.
- ► Nice theoretical properties remain!
- ► Strengthening of generated inequalities should be possible.
- ▶ Auxiliary graph is of polynomial size, but $\mathcal{O}(|E|^2 + |V|)$ nodes and $\mathcal{O}(|E|^3 + |E| \cdot |V|)$ edges is not exactly small in practice.

Good news:

Preliminary results on using a smaller auxiliary graph \rightsquigarrow expect drastic reduction of running time.

Conclusions & Future Work

Multilinear Polytope Society Separation Algo Computations Conclusions

Occurrently Conclusions & Separation Algo Computations Conclusions

Conclusions – Future Research Directions

[Del Pia, Walter '22]

- ▶ New inequalities are the right relaxation for separation.
- ► Nice theoretical properties remain!
- ► Strengthening of generated inequalities should be possible.
- ▶ Auxiliary graph is of polynomial size, but $\mathcal{O}(|E|^2 + |V|)$ nodes and $\mathcal{O}(|E|^3 + |E| \cdot |V|)$ edges is not exactly small in practice.

Good news:

▶ Preliminary results on using a smaller auxiliary graph → expect drastic reduction of running time.

Happy Birthday SCIP!