Safe Verified Gomory Mixed Integer Cuts for Exact Rational MIP

Leon Eifler ¹, Ambros Gleixner ^{1,2}

¹Zuse Institute Berlin ²HTW Berlin eifler@zib.de SCIP 20th anniversary Berlin · Nov 04 2022

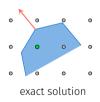
How exact are MIP solvers?

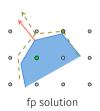
Proven optimality guarantees are a unique selling point of MIP solvers:

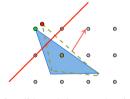
$$L \le c^T x^* \le U$$

with primal-dual gap $U - L \rightarrow 0$.

In a strict mathematical sense, this promise is compromised by rounding errors







invalid model strengthening

Closing the gap

Proven optimality guarantees are a unique selling point of MIP solvers:

$$L \le c^T x^* \le U$$

with primal-dual gap $U - L \rightarrow 0$.

In a strict mathematical sense, this promise is compromised by rounding errors

Goal: close this gap between theory and practice of MIP by providing

- (a) a roundoff-error-free MIP solver with
- (b) with comparable performance and
- (c) solver-independent verification of results.

Outline

1. Previous work: hybrid-precision algorithms for LP and MIP

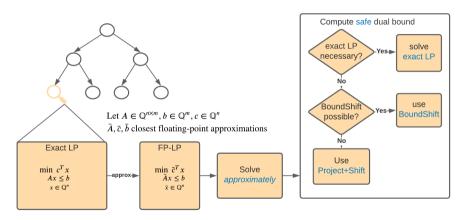
2. Safe Gomory mixed-integer cuts and their performance

3. Verification/Proof-logging

Hybrid-Precision solving of exact MIPs

Cook, Koch, Steffy, Wolter (2013) [2]

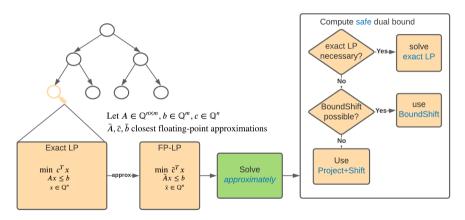
Given $A \in \mathbb{Q}^{n \times m}, c \in \mathbb{Q}^n, b \in \mathbb{Q}^m$, consider the clostest floating-point representable approximation $\bar{A}, \bar{c}, \bar{b}$



Hybrid-Precision solving of exact MIPs

Cook, Koch, Steffy, Wolter (2013) [2]

Given $A \in \mathbb{Q}^{n \times m}, c \in \mathbb{Q}^n, b \in \mathbb{Q}^m$, consider the clostest floating-point representable approximation $\bar{A}, \bar{c}, \bar{b}$



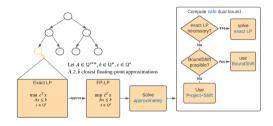
Hybrid-Precision Solving of Exact MIPs

Available in exact solver[3]

- presolving
- primal heuristics

Algorithmic gap to state-of-the-art

- no cutting planes
- · no domain propagation
- · no conflict analysis



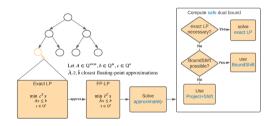
Hybrid-Precision Solving of Exact MIPs

Available in exact solver[3]

- presolving
- primal heuristics

Algorithmic gap to state-of-the-art

- no cutting planes
- · no domain propagation
- · no conflict analysis



Safe GMI cuts via mixed integer rounding

Given a one-row relaxation $a^Tx \leq b$, $f := b - \lfloor b \rfloor$, $f_i := a_i - \lfloor a_i \rfloor$,

$$\sum_{i\in\mathcal{I}} \left(\lfloor a_i \rfloor + \frac{(f_i - f)^+}{1 - f} \right) x_i \le \lfloor b \rfloor + \sum_{i\not\in\mathcal{I}} \frac{a_i^-}{1 - f} x_i$$

is valid.

For GMI cuts $a^Tx \le b$ is obtained as a row of the optimal simplex tableau.

Safe GMI cuts via mixed integer rounding

Given a one-row relaxation $a^Tx \leq b$, $f := b - \lfloor b \rfloor$, $f_i := a_i - \lfloor a_i \rfloor$,

$$\sum_{i \in \mathcal{I}} \left(\lfloor a_i \rfloor + \frac{(f_i - f)^+}{1 - f} \right) x_i \le \lfloor b \rfloor + \sum_{i \notin \mathcal{I}} \frac{a_i^-}{1 - f} x_i$$

is valid.

For GMI cuts $a^Tx \le b$ is obtained as a row of the optimal simplex tableau.

Requires exact LP solution to be directly usable

Safe GMI cuts via mixed integer rounding

Given a one-row relaxation $a^Tx \le b$, $f := b - \lfloor b \rfloor$, $f_i := a_i - \lfloor a_i \rfloor$,

$$\sum_{i \in \mathcal{I}} \left(\lfloor a_i \rfloor + \frac{(f_i - f)^+}{1 - f} \right) x_i \le \lfloor b \rfloor + \sum_{i \notin \mathcal{I}} \frac{a_i^-}{1 - f} x_i$$

is valid.

For GMI cuts $a^Tx \le b$ is obtained as a row of the optimal simplex tableau.

Requires exact LP solution to be directly usable

Instead use approximation of A_B^{-1} and generate guaranteed feasible row using safe directed rounding. (Cook, Dash, Fukasawa, Gooycolea (2009) [1])

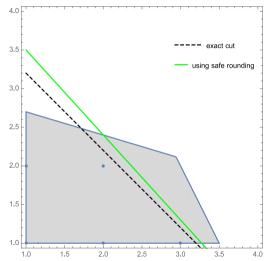
Safe rounding trick

- Assume each variable has at least upper or lower bound
- · Transform to non-negative variable space:

$$x \le u$$
 $x' = u - x \ge 0$
 $x > l$ $x' = x - l > 0$

- Round down all coefficients on left hand side, round up on right hand side
- · Transform back to original variable-space

Figure: Visualization of safe cutting plane idea



Theorem

Given two valid, floating-point representable inequalities $a^Tx \leq b$, $c^Tx \leq d$, and $\lambda > 0$. We can generate an approximation of the aggregated inequality $(a + \lambda c)^Tx \leq b + \lambda d$ by

$$\sum_{i\in U} \overline{\alpha_i} x_i + \sum_{i\in L} \underline{\alpha_i} x_i \leq \overline{d + \sum_{i\in U} (\overline{\alpha_i} - \underline{\alpha_i}) u_i + \sum_{i\in L} (\underline{\alpha_i} - \overline{\alpha_i}) l_i},$$

with $\alpha_i := a_i + \lambda_i c_i$.

Theorem

Given two valid, floating-point representable inequalities $a^Tx \le b$, $c^Tx \le d$, and $\lambda > 0$. We can generate an approximation of the aggregated inequality $(a + \lambda c)^Tx \le b + \lambda d$ by

$$\sum_{i\in U} \overline{\alpha_i} x_i + \sum_{i\in L} \underline{\alpha_i} x_i \leq \overline{d + \sum_{i\in U} (\overline{\alpha_i} - \underline{\alpha_i}) u_i + \sum_{i\in L} (\underline{\alpha_i} - \overline{\alpha_i}) l_i},$$

with $\alpha_i := a_i + \lambda_i c_i$.

Use same trick for:

- · fp-approximation of problem data
- · aggregation with multipliers from floating-point tableau
- transformation to nonnegative variable space
- · MIR formula
- resubstitution of slack variables
- cut scaling

MIPLIB 2017 Benchmark / 2 h time limit

setting	solved	time (rel)	nodes (rel)	exlptime (rel)
baseline	132	873.4	12555.9	74.0
cuts	136	793.7 (0.91)	5330.1 (0.42)	102.8 (1.39)

Observe:

MIPLIB 2017 Benchmark / 2 h time limit

setting	solved	time (rel)	nodes (rel)	exlptime (rel)
baseline	132	873.4	12555.9	74.0
cuts	136	793.7 (0.91)	5330.1 (0.42)	102.8 (1.39)

Observe:

MIPLIB 2017 Benchmark / 2 h time limit

setting	solved	time (rel)	nodes (rel)	exlptime (rel)
baseline	132	873.4	12555.9	74.0
cuts	136	793.7 (0.91)	5330.1 (0.42)	102.8 (1.39)

Observe:

- → control encoding length of coefficients by rounding to lower denominators
 - \cdot impose a limit on the maximal size denominators can attain ($2^{17}=131072$)
 - compute best approximations using continued fractions
 - \cdot offset right hand side by multiplying difference with variable bounds to ensure cut validity

MIPLIB 2017 Benchmark / 2 h time limit

setting	solved	time (rel)	nodes (rel)	exlptime (rel)
baseline	132	873.4	12555.9	74.0
cuts	136	793.7 (0.91)	5330.1 (0.42)	102.8 (1.39)
cuts/d-round	145	739.9 (0.85)	6322.5 (0.50)	70.7 (0.96)

Observe:

- → control encoding length of coefficients by rounding to lower denominators
 - \cdot impose a limit on the maximal size denominators can attain ($2^{17}=131072$)
 - compute best approximations using continued fractions
 - \cdot offset right hand side by multiplying difference with variable bounds to ensure cut validity

Verification/Proof-logging using VIPR-Certificates

The VIPR certificate format consists of

- · the problem specification
- · assumptions (e.g. branching decision, split disjunctions)
- aggregated constraints (most often $c^Tx \ge b$, derived by aggregation with dual-LP multipliers)
- · Chvátal-Gomory rounding
- unsplitting of Assumptions

Given			
	$x, y \in \mathbb{Z}$		
	$2x_1 + 3x_2$	_	
	$3x_1 - 4x_2$	_	
	$-x_1+6x_2$	≤ 3	
Derived		Reason	Assumptions
A1:	$x_1 \leq 0$	{assume}	
A2:	$x_1 \geq 1$,	
	$x_2 \leq 0$	{assume}	
C4:	$0 \ge 1$	$\{C1 + (-2) \times A1 + (-3) \times A3\}$	A1, A3
A4:	$x_2 \ge 1$	{assume}	
C5 :	$0 \ge 1$	$ \left\{ \left(-\frac{1}{3} \right) \times C3 + \left(-\frac{1}{3} \right) \times A1 + 2 \times A4 \right\} $ $ \left\{ \left(-\frac{1}{4} \right) \times C2 + \left(\frac{3}{4} \right) \times A2 \right\} $	A1, A4
C6:	$x_2 \ge \frac{1}{4}$	$\left\{\left(-\frac{1}{4}\right) \times C2 + \left(\frac{3}{4}\right) \times A2\right\}$	A2
C7 :	$x_2 \geq 1$	{round up C6}	A2
C8:	$0 \ge 1$	$\{(-\frac{1}{3}) \times C2 + (-1) \times C3 + \frac{14}{3} \times C7\}$	A2
C9:	$0 \ge 1$	{unsplit C4, C5 on A3, A4}	A1
C10:	$0 \ge 1$	{unsplit C8, C9 on A2, A1}	

Verified GMI cuts via mixed integer rounding

Challenge: Elementary verification by

- aggregations
- disjunctions
- Chvátal-Gomory rounding

as implemented in VIPR.

Easy in theory, tricky to implement:

avoid relying on MIR formula

Verified GMI cuts via mixed integer rounding

Challenge: Elementary verification by

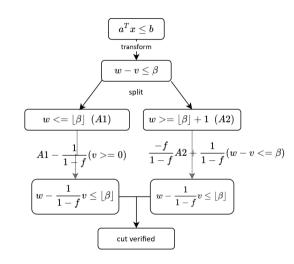
- aggregations
- disjunctions
- · Chvátal-Gomory rounding

as implemented in VIPR.

Easy in theory, tricky to implement:

- avoid relying on MIR formula
- · use interpretation as split cut
- post-process for "implicit" multipliers

→ solver-independent certificate file



Certified safe aggregation

The certificate checker will not accept the safe aggregation, since the printed constraint has coefficients $\overline{\alpha_i}$ (affected by the safe rounding routines)

Certified safe aggregation

The certificate checker will not accept the safe aggregation, since the printed constraint has coefficients $\overline{\alpha_i}$ (affected by the safe rounding routines)

Rectify this by computing and adding the rounding offset

$$(\overline{\alpha_i} - \alpha_i)(x_i \le u_i) \qquad \qquad i \in U$$

$$(\alpha_i - \alpha_i)(x_i \ge u_i) \qquad \qquad i \in L$$

Implemented in an intermediate certificate-completion step to avoid extending the logic of the checker itself

Certified safe aggregation

The certificate checker will not accept the safe aggregation, since the printed constraint has coefficients $\overline{\alpha_i}$ (affected by the safe rounding routines)

Rectify this by computing and adding the rounding offset

$$(\overline{\alpha_i} - \alpha_i)(x_i \le u_i) \qquad \qquad i \in U$$

$$(\alpha_i - \alpha_i)(x_i \ge u_i) \qquad \qquad i \in L$$

Implemented in an intermediate certificate-completion step to avoid extending the logic of the checker itself

Extra care has to be taken with slack variables!

Questions...? Thank you for your attention!

References:

William Cook, Sanjeeb Dash, Ricardo Fukasawa, and Marcos Goycoolea.

Numerically safe gomory mixed-integer cuts.

INFORMS Journal on Computing, 21(4):641–649, 2009.

William Cook, Thorsten Koch, Daniel E. Steffy, and Kati Wolter.

A hybrid branch-and-bound approach for exact rational mixed-integer programming.

Mathematical Programming Computation, 5(3):305-344, 2013.

Leon Eifler and Ambros Gleixner.

A computational status update for exact rational mixed integer programming.

In Integer Programming and Combinatorial Optimization: 22nd International Conference, IPCO 2021, Proceedings, 2021.