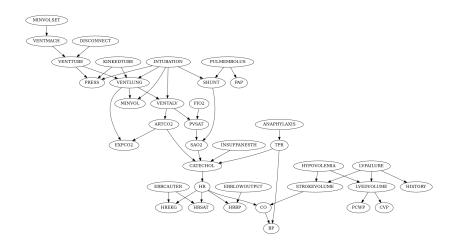
Branch-price-and-cut for Bayesian network structure learning

James Cussens, University of Bristol

SCIP 20th anniversary workshop 4 November 2022, ZIB

The Alarm Bayesian network



BNSL ILP formulation

$$\text{Minimise } \sum_{\substack{i \in P \\ J \subseteq P \setminus \{i\}}} c_{i \leftarrow J} x_{i \leftarrow J}$$

SUBJECT TO:

$$\sum_{J\subseteq P\setminus \{i\}} x_{i\leftarrow J} = 1 \qquad i \in P$$

$$\sum_{i\in C} \sum_{\substack{J\subseteq P\setminus \{i\}\\ J\cap C\neq\emptyset}} x_{i\leftarrow J} \le |C| - 1 \qquad C \subseteq P, |C| \ge 2$$

$$x_{i\leftarrow J} \in \{0, 1\}, i \in P, J \subseteq P \setminus \{i\}$$

Pricing and cutting

- We have exponentially many decision variables which motivates pricing.
- We have exponentially many constraints which motivates a cutting plane approach.
- We could have only a quadratic number of acyclicity constraints but we choose to use the exponentially many cluster constraints since they are known to be facet-defining.
- In fact, any connected matroid defined on any subset of P defines a facet.¹

¹Milan Studený. "How matroids occur in the context of learning Bayesian network structure". In: *Proceedings of the 31st Conference on Uncertainty in Artificial Intelligence (UAI 2015)*. Ed. by Marina Meila and Tom Heskes. AUAI Press, 2015, pp. 832–841.

BNSL linear relaxation of combinatorial relaxation

$$\begin{array}{ll} \text{Minimise} & \displaystyle \sum_{\substack{i \in P \\ J \subseteq P \setminus \{i\}}} c_{i \leftarrow J} x_{i \leftarrow J} \end{array}$$

SUBJECT TO:

$$\sum_{J\subseteq P\setminus\{i\}} x_{i\leftarrow J} = 1 \qquad i \in P$$

$$\sum_{i\in C} \sum_{\substack{J\subseteq P\setminus\{i\}\\J\cap C\neq\emptyset}} x_{i\leftarrow J} \le |C| - 1 \qquad C \subseteq P, C \in C$$

$$x_{i\leftarrow J} \in [0, 1], i \in P, J \subseteq P \setminus \{i\}$$

A generic pricing problem

- Let λ_i^* and λ_C^* ($C \in C$) be the dual values for the equations and cluster constraints, respectively.
- ▶ One natural approach is to look for a new family variable $x_{i\leftarrow J}$ with minimal negative reduced cost for each $i \in P$:

$$\begin{array}{ll} \mathsf{Minimise}_J & z = c_{i \leftarrow J} - \lambda_i^* - \sum_{\substack{C \in C, i \in C \\ C \cap J \neq \emptyset}} \lambda_C^* \\ & \mathsf{subject to} & z < 0 \end{array}$$

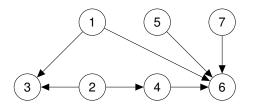
Note that since $\lambda_C^* \leq 0$, it is harder for big parents sets J to have negative reduced cost, since they 'make a cycle more likely'.

Pricing for ℓ_0 penalised Gaussian BNs

$$\begin{array}{ll} \text{Minimise}_J & z = n\log\sigma_{i\leftarrow J}^2 + \Lambda^2|J| - \sum_{\substack{C \in C, i \in C \\ C \cap J \neq \emptyset}} \lambda_C^* \\ \text{subject to} & z < \lambda_i^* \end{array}$$

- Learning a ℓ₀ penalised Gaussian BNs amounts to finding a 'good' ℓ₀ linear regression model for each i ∈ P without allowing cycles.
- ▶ We add a cycle-penalty to the ℓ_0 penalty.
- $\sigma_{i \leftarrow J}^2$ denotes minimal squared error when predicting i using predictors J in a linear regression model. But this not a convex problem since we have $\log \sigma_{i \leftarrow J}^2$ rather than $\sigma_{i \leftarrow J}^2$.

Example of price-and-cut



LP	C	$ \mathcal{V} $	Rounds	Obj
1	0	14	7,0	-20954
2	20	35	4,4,5,4,3,1,0	-38006
3	40	50	4,5,3,2,1,0	-43158
4	60	52	2,0	-45301

Using pricing we end up with 52 'family' variables rather than $7 \times 2^6 = 448$.

Branch-price-and-cut

- We branch not on family variables but arrow indicator variables for a more balanced search tree.
- ▶ Instead of the constraint $x_{i \leftarrow j} = \sum_{J:j \in J} x_{i \leftarrow J}$,
- we post two set partitioning constraints $\sum_{J:j\in J} x_{i\leftarrow J} + \neg x_{i\leftarrow j} = 1$ and $\sum_{J:j\notin J} x_{i\leftarrow J} + x_{i\leftarrow j} = 1$.
- ► This allows SCIP to perform the desired propagations even when new $x_{i\leftarrow J}$ may be priced in.
- It is not too hard to alter the pricing algorithm to be consistent with the set of obligatory and forbidden arrows in any node.

Partial order variables

- ► To facilitate propagation we also create partial order variables $x_{i \leftrightarrow j}$.
- $> x_{i \leftarrow j} + \neg x_{i \leadsto j} \le 1$
- $> x_{i \leftrightarrow j} + x_{j \leftrightarrow i} \leq 1$

What is/isn't in the LP

- Partial order variables and their constraints are not in the LP. An adaptation of Marc Pfetsch's LOP constraint handler is used for them.
- ▶ The constraints $\sum_{J:j\in J} x_{i\leftarrow J} + \neg x_{i\leftarrow j} = 1$ are in the LP and so have associated dual values $\lambda_{i\leftarrow j}^*$.

$$\begin{array}{ll} \mathsf{Minimise}_J & z = c_{i \leftarrow J} - \sum_{j \in J} \lambda_{i \leftarrow j}^* - \sum_{\substack{C \in C, i \in C \\ C \cap J \neq \emptyset}} \lambda_C^* \\ \mathsf{subject to} & z < \lambda_i^* \end{array}$$

Pricing via nonlinear optimisation

Minimise
$$z = nx_{\log \sigma^2} + \sum_{j \in P \setminus \{i\}} (\Lambda^2 - \lambda_{i \leftarrow j}^*) y_j - \sum_{C \in C} \lambda_C^* y_C$$
 subject to
$$\sum_{j \in P \setminus \{i\}} \gamma_j^2 + c \le nx_{\sigma^2}$$

$$x_{\log \sigma^2} = \log x_{\sigma^2}$$

$$\gamma = S^{1/2} \beta - S^{-1/2} \boldsymbol{X}_{-i}^{\mathsf{T}} \boldsymbol{X}_i$$

$$(\beta_j, 1 - y_j) : \text{SOS-1} \qquad j \in P \setminus \{i\}$$

$$y_C = \bigvee_{j \in C} y_j \qquad C \in C$$

$$z < \lambda_i^*$$

 $X_{\sigma^2} \in \mathbb{R}_+ \ X_{\log \sigma^2}, \gamma_i, \beta_i \in \mathbb{R} \ y_i, y_C \in \{0, 1\}$

How to interleave pricing and cutting?

- In the standard approach to cut-and-price each LP is solved to optimality (using pricing), and only once it is solved do we look for cuts to get a better LP (i.e. a tighter linear relaxation).
- But why bother solving an LP to optimality if it will soon be replaced by a better one? Also tight LPs make the pricing problem easier.
- So I add the option to only start pricing once we can find no more cuts.
- Thanks to Stephen Maher on ideas on how to 'trick' SCIP into doing delayed pricing!

Creating initial parent sets

- ▶ A good idea to create, for each 'child' *i* all necessary parent sets *J* up to some size *k*.
- Sometimes one can establish that no bigger parent sets are needed for a particular child and so we can avoid futilely attempting to price in new parent sets.
- Also useful to find the parent set that would be the best for each child, if we did not have to worry about cycles.

Does it work?

At time of writing my implementation is not entirely bug-free, but usually gives the correct answers - eventually!

k	NVars	Solving Time	Pricing time
1	321	478	475
2	316	463	459
3	283	151	150
4	282	80	77
5	-	-	-
6	276	2	0

Table: Solving times for PRICEBNLEARN on the small gaussian.test dataset using BIC ℓ_0 penalised log squared error. NVars indicates the number of IP variables in the problem at the point it is solved.

With an easier objective ...

k	NVars	Solving Time	Pricing time
1	151	12.7	12.6
2	194	11.8	11.7
3	243	9.2	9.1
4	261	3.1	3.0
5	262	0.1	0
6	262	0.1	0

Table: Solving times for PRICEBNLEARN on the small gaussian.test dataset using BIC ℓ_0 penalised squared error. NVars indicates the number of IP variables in the problem at the point it is solved.

The benefits of delayed pricing

On a bigger problem with pricing as normal:

k	NVars	Solving Time	Pricing time
3	≥ 3022	> 2457	> 2457
6	19386	2206	2192

With delayed pricing:

k	NVars	Solving Time	Pricing time
3	3035	1326	1324
6	19386	351	335

General points

- There are big opportunities for MIP methods in machine learning.
- ► For example, pricing is needed for MIP learning of causal models where latent variables are allowed.².
- Naturally, we need a pricer that is fast (or infrequently called) for this approach to be a practical option.
- The interplay between pricing, cutting and branching requires careful consideration.

²Rui Chen, Sanjeeb Dash, and Tian Gao. "Integer Programming for Causal Structure Learning in the Presence of Latent Variables". In: *Proceedings of the 38th International Conference on Machine Learning*. Ed. by Marina Meila and Tong Zhang. Vol. 139. Proceedings of Machine Learning Research. PMLR, 18–24 Jul 2021, pp. 1550–1560. URL: